首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L Gorza  M Vitadello 《FASEB journal》2000,14(3):461-475
We previously showed that skeletal myocytes of the adult rabbit do not accumulate the endoplasmic reticulum glucose-regulated protein GRP94, neither constitutively nor inducibly, at variance with skeletal myocytes during perinatal development (5). Here we show that C2C12 cells up-regulate GRP94 during differentiation and, similarly to primary cultures of murine skeletal myocytes, specifically display GRP94 immunoreactivity on the cell surface. Stable transfection of C2C12 cells with grp94 antisense cDNA shows lack of myotube formation in clones displaying >40% reduction in GRP94 amount. The same result is obtained after in vivo injection of grp94-antisense myoblasts. Conversely, GRP94 overexpression is accompanied by accelerated myotube formation. Analyses of BrdU incorporation, p21 nuclear translocation, and muscle-gene expression show that muscle differentiation is not apparently affected in grp94-antisense clones. In contrast, cell-surface GRP94 is greatly reduced in grp94-antisense clones, as shown by immunocytochemistry and precipitation of cell-surface biotinylated proteins. Thus, cell-surface expression of GRP94 is necessary for maintenance of fusion competence. Furthermore, differentiating C2C12 cells grown in the presence of anti-GRP94 antibody show decreased myotube number suggesting that cell-surface GRP94 is directly involved in myoblast fusion process.  相似文献   

2.
GRP94 (glucose-regulated protein of 94 kDa) is a major luminal constituent of the endoplasmic reticulum with known high capacity for calcium in vivo and a peptide-binding activity in vitro. In the present study, we show that Ca2+ regulates the ability of GRP94 to bind peptides. This effect is due to a Ca2+-binding site located in the charged linker domain of GRP94, which, when occupied, enhances the association of peptides with the peptide-binding site in the N-terminal domain of the protein. We further show that grp94-/- cells are hypersensitive to perturbation of intracellular calcium and thus GRP94 is important for cellular Ca2+ storage.  相似文献   

3.
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.  相似文献   

4.
5.
Glucose-regulated protein 94 (grp94) is a major component of the endoplasmic reticulum (ER) lumen of eukaryotic cells. We showed that grp94 is released from baby hamster kidney (BHK-21) cells into a serum-free medium. The exit of grp94 into the medium was not related to the protein discharge due to cell death and was independent of de novo protein synthesis. The treatment of cells with brefeldin A and monensin, the inhibitors of the classical pathway of protein secretion, did not decrease the extracellular level of grp94, indicating that the discharge of grp94 from cells does not occur through the ER/Golgi-dependent pathway. Exosomes, membrane vesicles secreted by several cell types, were not involved in the release of grp94 from cells. Methyl-β-cyclodextrin, a substance that disrupts the lipid raft organization, considerably reduced the extracellular level of grp94, indicating that lipid rafts are involved in the liberation of grp94 from BHK-21 cells. The results suggest that BHK-21 cells release grp94 into the serum-free medium via the nonclassical secretory pathway in which lipid rafts play an important role. Copyright ? 2012 John Wiley & Sons, Ltd.  相似文献   

6.
7.
Glucose‐regulated protein 94 (grp94) is a major component of the endoplasmic reticulum (ER) lumen of eukaryotic cells. We showed that grp94 is released from baby hamster kidney (BHK‐21) cells into a serum‐free medium. The exit of grp94 into the medium was not related to the protein discharge due to cell death and was independent of de novo protein synthesis. The treatment of cells with brefeldin A and monensin, the inhibitors of the classical pathway of protein secretion, did not decrease the extracellular level of grp94, indicating that the discharge of grp94 from cells does not occur through the ER/Golgi–dependent pathway. Exosomes, membrane vesicles secreted by several cell types, were not involved in the release of grp94 from cells. Methyl‐β‐cyclodextrin, a substance that disrupts the lipid raft organization, considerably reduced the extracellular level of grp94, indicating that lipid rafts are involved in the liberation of grp94 from BHK‐21 cells. The results suggest that BHK‐21 cells release grp94 into the serum‐free medium via the nonclassical secretory pathway in which lipid rafts play an important role. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
9.
The C-terminal domain (residues 518-803) of the 94 kDa glucose regulated protein (grp94) was expressed in Escherichia coli as a fusion protein with a His6-N-terminal tag (grp94-CT). This truncated form of grp94 formed dimers and oligomers that could be dissociated into monomers by treatment with dithiothreitol. Grp94-CT conferred protection against aggregation on the catalytic subunit of protein kinase CK2 (CK2alpha), although it did not protect against thermal inactivation. This anti-aggregation effect of grp94-CT was concentration dependent, with full protection achieved at grp94-CT/CK2alpha molar ratios of 4 : 1. The presence of dithiothreitol markedly reduced the anti-aggregation effects of grp94-CT on CK2alpha without altering the solubility of the chaperone. It is concluded that the chaperone activity of the C-terminal domain of human grp94 requires the maintenance of its quaternary structure (dimers and oligomers), which seems to be stabilised by disulphide bonds.  相似文献   

10.
11.
葡萄糖调节蛋白94又叫做内质网蛋白99,是一种内质网分子伴侣蛋白,与HSP90有50%的同源性。GRP94蛋白可以和Ca2+结合具有蛋白伴侣特性,能协助新合成的多肽转位、折叠、寡聚体的组装、降解,抑制错误折叠蛋白的分泌;GRP94还具有抗原呈递的作用,可以作为肿瘤细胞的伴侣蛋白,参与肿瘤细胞的新陈代谢,保护肿瘤细胞免受有害因素的侵害。GRP94可能与人类多种肿瘤的发生有关,其表达的增高可能是肿瘤发生发展的一个重要因素。GRP94在肿瘤组织中高表达提示相关研究者,应用基因手段抑制GRP94的表达可能能够抑制肿瘤细胞的生长、侵袭和转移、增加肿瘤细胞对化疗药物的敏感性等,并且利用GRP94作为一种新的肿瘤治疗的靶分子或介质可能为肿瘤的基因治疗带来更广泛的应用前景。  相似文献   

12.
GRP94 (gp96)-peptide complexes can be internalized by APCs and their associated peptides cross-presented to yield activation of CD8(+) T cells. Investigations into the identity (or identities) of GRP94 surface receptors have yielded conflicting results, particularly with respect to CD91 (LRP1), which has been proposed to be essential for GRP94 recognition and uptake. To assess CD91 function in GRP94 surface binding and endocytosis, these parameters were examined in mouse embryonic fibroblast (MEF) cell lines whose expression of CD91 was either reduced via RNA interference or eliminated by genetic disruption of the CD91 locus. Reduction or loss of CD91 expression abrogated the binding and uptake of receptor-associated protein, an established CD91 ligand. Surface binding and uptake of an N-terminal domain of GRP94 (GRP94.NTD) was unaffected. GRP94.NTD surface binding was markedly suppressed after treatment of MEF cell lines with heparin, sodium chlorate, or heparinase II, demonstrating that heparin sulfate proteoglycans can function in GRP94.NTD surface binding. The role of CD91 in the cross-presentation of GRP94-associated peptides was examined in the DC2.4 dendritic cell line. In DC2.4 cells, which express CD91, GRP94.NTD-peptide cross-presentation was insensitive to the CD91 ligands receptor-associated protein or activated α(2)-macroglobulin and occurred primarily via a fluid-phase, rather than receptor-mediated, uptake pathway. These data clarify conflicting data on CD91 function in GRP94 surface binding, endocytosis, and peptide cross-presentation and identify a role for heparin sulfate proteoglycans in GRP94 surface binding.  相似文献   

13.
GRP94 is an inducible resident endoplasmic reticulum/sarcoplasmic reticulum (ER/SR) glycoprotein that functions as a protein chaperone and Ca(2+) regulator. GRP94 has been reported to be a substrate for protein kinase CK2 in vitro, although its phosphorylation in intact cells remains unreported. In Sf21 insect cells, overexpression of canine GRP94 led to the appearance of a multiplet of three or more molecular-mass isoforms which was reduced to a single mobility form following treatment of cells with tunicamycin, suggesting stable accumulations of consecutively modified protein. Metabolic labeling of Sf21 cells with (32)P(i) led to a constitutive phosphorylation of GRP94 which, based upon phosphopeptide mapping, occurred specifically on CK2-sensitive sites. Among the GRP94 multiplet, however, only the lowest mobility form of GRP94 was phosphorylated, even though in vitro phosphorylation of GRP94 by CK2 led to phosphorylation of all glycosylated forms. The (32)P(i) incorporation into GRP94 indicated a slow turnover of phosphate incorporation that was unaffected by inhibition of biosynthesis, resulting in a steady-state level of phospho-GRP94 on CK2 sites. These data support a role for protein kinase CK2 in the cell biology for GRP94 and other resident ER/SR proteins that may occur in ER compartments.  相似文献   

14.
《Journal of Asia》2014,17(3):303-309
Glucose-regulated protein 78 (GRP78) is a member of the HSP70 family of proteins and is localized in the endoplasmic reticulum (ER) within cells. GRP78 and its gene has been identified in only a few species of insects, and its role is not clear. Here, we identified full-length grp78 cDNA from the Indian meal moth, Plodia interpunctella, and demonstrated the role of grp78 in developmental and physiological processes of the insect. The deduced amino acid sequence of GRP78 contained highly conserved functional motifs of the HSP70 family and the C-terminal motif of KDEL, which is characteristic of ER-localized HSP70. It also showed high identity (93–94%) with GRP78 and related HSP70 proteins of lepidopteran species. Gene expression analysis showed that grp78 mRNA levels were high in the egg, feeding larval, and adult stages, but low in the molting, wandering larval, and pupal stages of development. In a tissue comparison of fifth instar P. interpunctella, grp78 level was higher in the gut than in the integument or fat bodies. Grp78 level decreased greatly when fifth-instar larvae were starved for 48 h, but recovered within 3–6 h after re-feeding. Our data suggest that grp78 is highly associated with dietary energy conditions during development and may play an important role in the nutritional physiology of insects.  相似文献   

15.
16.
Glucose-regulated protein 94 (GRP94/gp96), the endoplasmic reticulum heat shock protein 90 paralog, elicits both innate and adaptive immune responses. Regarding the former, GRP94/gp96 stimulates APC cytokine expression and dendritic cell maturation. The adaptive component of GRP94/gp96 function reflects a proposed peptide-binding activity and, consequently, a role for native GRP94/gp96-peptide complexes in cross-presentation. It is by this mechanism that tumor-derived GRP94/gp96 is thought to suppress tumor growth and metastasis. Recent data have demonstrated that GRP94/gp96-elicited innate immune responses can be sufficient to suppress tumor growth and metastasis. However, the immunological processes activated in response to tumor Ag-negative sources of GRP94/gp96 are currently unknown. We have examined the in vivo immunological response to nontumor sources of GRP94/gp96 and report that administration of syngeneic GRP94/gp96- or GRP94/gp96-N-terminal domain-secreting KBALB fibroblasts to BALB/c mice stimulates CD11b(+) and CD11c(+) APC function and promotes bystander activation of CD4(+) T cell Th1 cytokine production. Only modest activation of CD8(+) T cell or NK cell cytolytic function was observed. The GRP94/gp96-dependent induction of CD4(+) T cell cytokine production was markedly inhibited by carrageenan, indicating an essential role for APC in this response. These results identify the bystander activation of CD4(+) T lymphocytes as a previously unappreciated immunological consequence of GRP94/gp96 administration and demonstrate that GRP94/gp96-elicited alterations in the in vivo cytokine environment influence the development of CD4(+) T cell effector functions, independently of its proposed function as a peptide chaperone.  相似文献   

17.
Characterization and purification of the 94-kDa glucose-regulated protein   总被引:2,自引:0,他引:2  
Increased synthesis of so-called glucose-regulated proteins (grp) of 78 and 94 kDa occurs in mammalian cells exposed to a variety of agents, including 2-mercaptoethanol, tunicamycin, agents which perturb calcium homeostasis, and amino acid analogs. Herein we describe a number of properties of 94-kDa grp (grp 94) and present a method for its purification to homogeneity. The protein, within the endoplasmic reticulum (ER), is modified by the addition of high mannose-containing oligosaccharides. The predicted amino acid sequence of grp 94, as determined by others, has revealed the protein to contain a putative transmembrane domain near its amino terminus, but in addition, a potential endoplasmic reticulum retention sequence (KDEL) at its COOH terminus. Consequently, the question of whether grp 94 exists as a transmembrane or luminal protein of the ER remains controversial. Results using isolated microsomes subjected to either limited proteolysis or lactoperoxidase-mediated iodination were consistent with the idea that the grp is a transmembrane protein. On the other hand, using the method of sodium carbonate extraction, grp 94 exhibited properties of both a luminal and integral membrane protein. These results raise the question of whether there exist two different forms of grp 94 within the ER.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号