首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Database of Interacting Proteins (DIP; http://dip.doe-mbi.ucla. edu) is a database that documents experimentally determined protein-protein interactions. Since January 2000 the number of protein-protein interactions in DIP has nearly tripled to 3472 and the number of proteins to 2659. New interactive tools have been developed to aid in the visualization, navigation and study of networks of protein interactions.  相似文献   

2.
One possible path towards understanding the biological function of a target protein is through the discovery of how it interfaces within protein-protein interaction networks. The goal of this study was to create a virtual protein-protein interaction model using the concepts of orthologous conservation (or interologs) to elucidate the interacting networks of a particular target protein. POINT (the prediction of interactome database) is a functional database for the prediction of the human protein-protein interactome based on available orthologous interactome datasets. POINT integrates several publicly accessible databases, with emphasis placed on the extraction of a large quantity of mouse, fruit fly, worm and yeast protein-protein interactions datasets from the Database of Interacting Proteins (DIP), followed by conversion of them into a predicted human interactome. In addition, protein-protein interactions require both temporal synchronicity and precise spatial proximity. POINT therefore also incorporates correlated mRNA expression clusters obtained from cell cycle microarray databases and subcellular localization from Gene Ontology to further pinpoint the likelihood of biological relevance of each predicted interacting sets of protein partners.  相似文献   

3.
Identification of essential proteins is key to understanding the minimal requirements for cellular life and important for drug design. The rapid increase of available protein-protein interaction (PPI) data has made it possible to detect protein essentiality on network level. A series of centrality measures have been proposed to discover essential proteins based on network topology. However, most of them tended to focus only on the location of single protein, but ignored the relevance between interactions and protein essentiality. In this paper, a new centrality measure for identifying essential proteins based on edge clustering coefficient, named as NC, is proposed. Different from previous centrality measures, NC considers both the centrality of a node and the relationship between it and its neighbors. For each interaction in the network, we calculate its edge clustering coefficient. A node’s essentiality is determined by the sum of the edge clustering coefficients of interactions connecting it and its neighbors. The new centrality measure NC takes into account the modular nature of protein essentiality. NC is applied to three different types of yeast protein-protein interaction networks, which are obtained from the DIP database, the MIPS database and the BioGRID database, respectively. The experimental results on the three different networks show that the number of essential proteins discovered by NC universally exceeds that discovered by the six other centrality measures: DC, BC, CC, SC, EC, and IC. Moreover, the essential proteins discovered by NC show significant cluster effect.  相似文献   

4.
The Database of Interacting Proteins (DIP: http://dip.doe-mbi.ucla.edu) is a database that documents experimentally determined protein–protein interactions. It provides the scientific community with an integrated set of tools for browsing and extracting information about protein interaction networks. As of September 2001, the DIP catalogs ~11 000 unique interactions among 5900 proteins from >80 organisms; the vast majority from yeast, Helicobacter pylori and human. Tools have been developed that allow users to analyze, visualize and integrate their own experimental data with the information about protein–protein interactions available in the DIP database.  相似文献   

5.
MOTIVATION: Given that association and dissociation of protein molecules is crucial in most biological processes several in silico methods have been recently developed to predict protein-protein interactions. Structural evidence has shown that usually interacting pairs of close homologs (interologs) physically interact in the same way. Moreover, conservation of an interaction depends on the conservation of the interface between interacting partners. In this article we make use of both, structural similarities among domains of known interacting proteins found in the Database of Interacting Proteins (DIP) and conservation of pairs of sequence patches involved in protein-protein interfaces to predict putative protein interaction pairs. RESULTS: We have obtained a large amount of putative protein-protein interaction (approximately 130,000). The list is independent from other techniques both experimental and theoretical. We separated the list of predictions into three sets according to their relationship with known interacting proteins found in DIP. For each set, only a small fraction of the predicted protein pairs could be independently validated by cross checking with the Human Protein Reference Database (HPRD). The fraction of validated protein pairs was always larger than that expected by using random protein pairs. Furthermore, a correlation map of interacting protein pairs was calculated with respect to molecular function, as defined in the Gene Ontology database. It shows good consistency of the predicted interactions with data in the HPRD database. The intersection between the lists of interactions of other methods and ours produces a network of potentially high-confidence interactions.  相似文献   

6.
7.
蛋白质-蛋白质相互作用(Protein-protein interaction,PPI)是生命体结构和生命活动的基础和特征,控制着生命活动的各个过程.PPI网络是研究蛋白质相互作用的有效手段.随着高通量实验技术的发展,越来越多的PPI数据得以使用,收录蛋白质相互作用的数据库数据每年都有变化.本文对DIP数据库从2003年到2008年的PPI网络数据分别计算度分布.为提高可信度,对注释蛋白质数据库交集进行抽样,分别探讨对不同年份的数据和注释数据库抽样对PPI网络度分布的影响.结果表明,从2003年到2008年的数据增长对PPI网络度分布没有明显影响,而且拟合度分布最优的函数并不是以往所认为的幂率分布(power-law),而是广延指数(stretched exponential)函数,数据库交集抽样同样得到广延指数(stretched exponential)函数分布最优且可信度的高低并不影响PPI网络的度分布.  相似文献   

8.
蛋白质相互作用数据库及其应用   总被引:3,自引:0,他引:3  
对蛋白质相互作用及其网络的了解不仅有助于深入理解生命活动的本质和疾病发生的机制,而且可以为药物研发提供靶点.目前,通过高通量筛选、计算方法预测和文献挖掘等方法,获得了大批量的蛋白质相互作用数据,并由此构建了很多内容丰富并日益更新的蛋白质相互作用数据库.本文首先简要阐述了大规模蛋白质相互作用数据产生的3种方法,然后重点介绍了几个人类相关的蛋白质相互作用公共数据库,包括HPRD、BIND、 IntAct、MINT、 DIP 和MIPS,并概述了蛋白质相互作用数据库的整合情况以及这些数据库在蛋白质相互作用网络构建上的应用.  相似文献   

9.
The Alanine Scanning Energetics database (ASEdb) is a searchable database of single alanine mutations in protein-protein, protein-nucleic acid, and protein-small molecule interactions for which binding affinities have been experimentally determined. In cases where structures are available, it contains surface areas of the mutated side chain and links to the PDB entries. It is useful for studying the contribution of single amino acids to the energetics of protein interactions, and can be updated by researchers as new data are generated.  相似文献   

10.
11.
Lu L  Lu H  Skolnick J 《Proteins》2002,49(3):350-364
In this postgenomic era, the ability to identify protein-protein interactions on a genomic scale is very important to assist in the assignment of physiological function. Because of the increasing number of solved structures involving protein complexes, the time is ripe to extend threading to the prediction of quaternary structure. In this spirit, a multimeric threading approach has been developed. The approach is comprised of two phases. In the first phase, traditional threading on a single chain is applied to generate a set of potential structures for the query sequences. In particular, we use our recently developed threading algorithm, PROSPECTOR. Then, for those proteins whose template structures are part of a known complex, we rethread on both partners in the complex and now include a protein-protein interfacial energy. To perform this analysis, a database of multimeric protein structures has been constructed, the necessary interfacial pairwise potentials have been derived, and a set of empirical indicators to identify true multimers based on the threading Z-score and the magnitude of the interfacial energy have been established. The algorithm has been tested on a benchmark set comprised of 40 homodimers, 15 heterodimers, and 69 monomers that were scanned against a protein library of 2478 structures that comprise a representative set of structures in the Protein Data Bank. Of these, the method correctly recognized and assigned 36 homodimers, 15 heterodimers, and 65 monomers. This protocol was applied to identify partners and assign quaternary structures of proteins found in the yeast database of interacting proteins. Our multimeric threading algorithm correctly predicts 144 interacting proteins, compared to the 56 (26) cases assigned by PSI-BLAST using a (less) permissive E-value of 1 (0.01). Next, all possible pairs of yeast proteins have been examined. Predictions (n = 2865) of protein-protein interactions are made; 1138 of these 2865 interactions have counterparts in the Database of Interacting Proteins. In contrast, PSI-BLAST made 1781 predictions, and 1215 have counterparts in DIP. An estimation of the false-negative rate for yeast-predicted interactions has also been provided. Thus, a promising approach to help assist in the assignment of protein-protein interactions on a genomic scale has been developed.  相似文献   

12.
To understand the networks in living cells, it is indispensably important to identify protein-protein interactions on a genomic scale. Unfortunately, it is both time-consuming and expensive to do so solely based on experiments due to the nature of the problem whose complexity is obviously overwhelming, just like the fact that "life is complicated". Therefore, developing computational techniques for predicting protein-protein interactions would be of significant value in this regard. By fusing the approach based on the gene ontology and the approach of pseudo-amino acid composition, a predictor called "GO-PseAA" predictor was established to deal with this problem. As a showcase, prediction was performed on 6323 protein pairs from yeast. To avoid redundancy and homology bias, none of the protein pairs investigated has > or = 40% sequence identity with any other. The overall success rate obtained by jackknife cross-validation was 81.6%, indicating the GO-PseAA predictor is very promising for predicting protein-protein interactions from protein sequences, and might become a useful vehicle for studying the network biology in the postgenomic era.  相似文献   

13.
14.

Background  

Several protein-protein interaction studies have been performed for the yeast Saccharomyces cerevisiae using different high-throughput experimental techniques. All these results are collected in the BioGRID database and the SGD database provide detailed annotation of the different proteins. Despite the value of BioGRID for studying protein-protein interactions, there is a need for manual curation of these interactions in order to remove false positives.  相似文献   

15.
With the development of high-throughput methods for identifying protein-protein interactions, large scale interaction networks are available. Computational methods to analyze the networks to detect functional modules as protein complexes are becoming more important. However, most of the existing methods only make use of the protein-protein interaction networks without considering the structural limitations of proteins to bind together. In this paper, we design a new protein complex prediction method by extending the idea of using domain-domain interaction information. Here we formulate the problem into a maximum matching problem (which can be solved in polynomial time) instead of the binary integer linear programming approach (which can be NP-hard in the worst case). We also add a step to predict domain-domain interactions which first searches the database Pfam using the hidden Markov model and then predicts the domain-domain interactions based on the database DOMINE and InterDom which contain confirmed DDIs. By adding the domain-domain interaction prediction step, we have more edges in the DDI graph and the recall value is increased significantly (at least doubled) comparing with the method of Ozawa et al. (2010) [1] while the average precision value is slightly better. We also combine our method with three other existing methods, such as COACH, MCL and MCODE. Experiments show that the precision of the combined method is improved. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   

16.
MOTIVATION: Public resources for studying protein interfaces are necessary for better understanding of molecular recognition and developing intermolecular potentials, search procedures and scoring functions for the prediction of protein complexes. RESULTS: The first release of the DOCKGROUND resource implements a comprehensive database of co-crystallized (bound-bound) protein-protein complexes, providing foundation for the upcoming expansion to unbound (experimental and simulated) protein-protein complexes, modeled protein-protein complexes and systematic sets of docking decoys. The bound-bound part of DOCKGROUND is a relational database of annotated structures based on the Biological Unit file (Biounit) provided by the RCSB as a separated file containing probable biological molecule. DOCKGROUND is automatically updated to reflect the growth of PDB. It contains 67,220 pairwise complexes that rely on 14,913 Biounit entries from 34,778 PDB entries (January 30, 2006). The database includes a dynamic generation of non-redundant datasets of pairwise complexes based either on the structural similarity (SCOP classification) or on user-defined sequence identity. The growing DOCKGROUND resource is designed to become a comprehensive public environment for developing and validating new methodologies for modeling of protein interactions. AVAILABILITY: DOCKGROUND is available at http://dockground.bioinformatics.ku.edu. The current first release implements the bound-bound part.  相似文献   

17.
The architecture of cellular proteins connected to form signaling pathways in response to internal and external cues is much more complex than a group of simple protein-protein interactions. Post translational modifications on proteins (e.g., phosphorylation of serine, threonine and tyrosine residues on proteins) initiate many downstream signaling events leading to protein-protein interactions and subsequent activation of signaling cascades leading to cell proliferation, cell differentiation and cell death. As evidenced by a rapidly expanding mass spectrometry database demonstrating protein phosphorylation at specific motifs, there is currently a large gap in understanding the functional significance of phosphoproteins with respect to their specific protein connections in the signaling cascades. A comprehensive map that interconnects phospho-motifs in pathways will enable identification of nodal protein interactions that are sensitive signatures indicating a disease phenotype from the physiological hemostasis and provide clues into control of disease. Using a novel phosphopeptide microarray technology, we have mapped endogenous tyrosine-phosphoproteome interaction networks in breast cancer cells mediated by signaling adaptor protein GRB2, which transduces cellular responses downstream of several RTKs through the Ras-ERK signaling cascade. We have identified several previously reported motif specific interactions and novel interactions. The peptide microarray data indicate that various phospho-motifs on a single protein are differentially regulated in various cell types and shows global downregulation of phosphoprotein interactions specifically in cells with metastatic potential. The study has revealed novel phosphoprotein mediated signaling networks, which warrants further detailed analysis of the nodes of protein-protein interaction to uncover their biomarker or therapeutic potential.  相似文献   

18.
We develop a stochastic model for quantifying the binary measurements of protein-protein interactions. A key concept in the model is the binary response function (BRF) which represents the conditional probability of successfully detecting a protein-protein interaction with a given number of the protein complexes. A popular form of the BRF is introduced and the effect of the sharpness (Hill's coefficient) of this function is studied. Our model is motivated by the recently developed yeast two-hybrid method for measuring protein-protein interaction networks. We suggest that the same phenomenological BRF can also be applied to the mass spectroscopic measurement of protein-protein interactions. Based on the model, we investigate the contributions to the network topology of protein-protein interactions from (i) the distribution of protein binary association free energy, and from (ii) the cellular protein abundance. It is concluded that the association constants among different protein pairs cannot be totally independent. It is also shown that not only the association constants but also the protein abundance could be a factor in producing the power-law degree distribution of protein-protein interaction networks.  相似文献   

19.
随着“蛋白质组学”的蓬勃发展和人类对生物大分子功能机制的知识积累,涌现出海量的蛋白质相互作用数据。随之,研究者开发了300多个蛋白质相互作用数据库,用于存储、展示和数据的重利用。蛋白质相互作用数据库是系统生物学、分子生物学和临床药物研究的宝贵资源。本文将数据库分为3类:(1)综合蛋白质相互作用数据库;(2)特定物种的蛋白质相互作用数据库;(3)生物学通路数据库。重点介绍常用的蛋白质相互作用数据库,包括BioGRID、STRING、IntAct、MINT、DIP、IMEx、HPRD、Reactome和KEGG等。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号