首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Rap1, which is activated by a large variety of stimuli, functions in the control of integrin-mediated cell adhesion. Here we show that in human megakaryocytes and several other commonly used hematopoietic cell lines such as K562, Jurkat, and THP-1, stress induced by gentle tumbling of the samples resulted in rapid and strong activation of Rap1. This turbulence-induced activation could not be blocked by inhibitors previously shown to affect Rap1 activation in human platelets, such as the intracellular calcium chelator BAPTA-AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid) and various protein kinase C inhibitors. Also inhibition of actin cytoskeleton dynamics did not influence this activation of Rap1, suggesting that this activation is mediated by cell surface receptors. Human platelets, however, were refractory to turbulence-induced activation of Rap1. To determine the consequences of Rap1 activation we measured adhesion of megakaryocytes to fibrinogen, which is mediated by the integrin alphaIIbbeta3, in the presence of inhibitors of Rap1 signaling. Introduction of both Rap1GAP and RalGDS-RBD in the megakaryoblastic cell line DAMI strongly reduced basal adhesion to immobilized fibrinogen. This inhibition was partially rescued by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate but not by alpha-thrombin. From these results we conclude that in megakaryocytes turbulence induces Rap1 activation that controls alphaIIbbeta3-mediated cell adhesion.  相似文献   

2.
The regulation of cell polarity plays an important role in chemotaxis. GbpD, a putative nucleotide exchange factor for small G-proteins of the Ras family, has been implicated in adhesion, cell polarity, and chemotaxis in Dictyostelium. Cells overexpressing GbpD are flat, exhibit strongly increased cell-substrate attachment, and extend many bifurcated and lateral pseudopodia. These cells overexpressing GbpD are severely impaired in chemotaxis, most likely due to the induction of many protrusions rather than an enhanced adhesion. The GbpD-overexpression phenotype is similar to that of cells overexpressing Rap1. Here we demonstrate that GbpD activates Rap1 both in vivo and in vitro but not any of the five other characterized Ras proteins. In a screen for Rap1 effectors, we overexpressed GbpD in several mutants defective in adhesion or cell polarity and identified Phg2 as Rap1 effector necessary for adhesion, but not cell polarity. Phg2, a serine/threonine-specific kinase, directly interacts with Rap1 via its Ras association domain.  相似文献   

3.
The small GTPase Rap1 regulates inside-out integrin activation and thereby influences cell adhesion, migration, and polarity. Several Rap1 effectors have been described to mediate the cellular effects of Rap1 in a context-dependent manner. Radil is emerging as an important Rap effector implicated in cell spreading and migration, but the molecular mechanisms underlying its functions are unclear. We report here that the kinesin KIF14 associates with the PDZ domain of Radil and negatively regulates Rap1-mediated inside-out integrin activation by tethering Radil on microtubules. The depletion of KIF14 led to increased cell spreading, altered focal adhesion dynamics, and inhibition of cell migration and invasion. We also show that Radil is important for breast cancer cell proliferation and for metastasis in mice. Our findings provide evidence that the concurrent up-regulation of Rap1 activity and increased KIF14 levels in several cancers is needed to reach optimal levels of Rap1–Radil signaling, integrin activation, and cell–matrix adhesiveness required for tumor progression.  相似文献   

4.
The CrkL adaptor protein is involved in signaling from the receptor for erythropoietin (Epo) as well as interleukin (IL)-3 and activates beta(1) integrin-mediated hematopoietic cell adhesion through its interaction with C3G, a guanine nucleotide exchange factor for Rap1. We demonstrate here that Epo as well as IL-3 activates Rap1 in an IL-3-dependent hematopoietic cell line, 32D, expressing the Epo receptor. The cytokine-induced activation of Rap1 was augmented in cells that inducibly overexpress CrkL or C3G. The CrkL-mediated enhancement of cell adhesion was inhibited by expression of a dominant negative mutant of Rap1, Rap1A-17N, whereas an activated mutant of Rap1, Rap1A-63E, activated beta(1) integrin-dependent adhesion of hematopoietic cells. In 32D cells, Rap1 was also activated by phorbol 12-myristate 13-acetate and ionomycin, which also enhanced cell adhesion to fibronectin, whereas, an inhibitor of phospholipase C, inhibited both cytokine-induced activation of Rap1 and cell adhesion. It was also demonstrated that Rap1 as well as CrkL is involved in signaling from the EpoR endogenously expressed in a human leukemic cell line, UT-7. These results suggest that Epo and IL-3 activate Rap1 at least partly through the CrkL-C3G complex as well as through additional pathways most likely involving phospholipase Cgamma and strongly implicate Rap1 in regulation of beta(1) integrin-mediated hematopoietic cell adhesion.  相似文献   

5.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.Key words: Rap1GAP, cell adhesion, matrix adhesion, Rap, E-cadherin, β-catenin  相似文献   

6.
The Ras superfamily of small G proteins is remarkable for both its diversity and physiological functions. One member, Rap1, has been implicated in a particularly wide range of biological processes, from cell proliferation and differentiation to cell adhesion. But the diversity of Rap1 has lead to contradictory reports of its effects. Originally identified as an antagonist of Ras-induced transformation, Rap1 can oppose other actions of Ras including regulation of cell growth and differentiation, integrin-dependent responses and synaptic plasticity. Furthermore, recent evidence confirms that Rap1, like Ras, can activate the MAP kinase cascade (ERK) in several cell types. These diverse functions of Rap1 underscore that the activation and action of Rap1 are regulated by complex factors that are cell-type specific.  相似文献   

7.
Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via beta1 (VLA-4) and beta2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Ras-proximal signaling, by which Rap1 might mediate transformation reversion.  相似文献   

8.
AF6 is involved in the connection of membrane-associated proteins to the actin cytoskeleton. It binds to Ras-like small GTPases and is suggested to be an effector of both Ras and Rap. Here we show that knockdown of AF6 in T cells by RNA interference enhanced Rap1-induced integrin-mediated cell adhesion, whereas overexpression of AF6 had the opposite effect. Interestingly, AF6-induced inhibition of cell adhesion correlated with an increase in RapGTP levels. Like AF6, protein KIAA1849 contains a Ras association domain and interacted with Rap1. However, KIAA1849 did not inhibit Rap1-induced cell adhesion. We concluded that AF6 is a negative regulator of Rap-induced cell adhesion. We proposed that AF6 inhibits Rap-mediated cell adhesion by sequestering RapGTP in an unproductive complex and thus prevents the interaction of Rap1 not only with effectors that mediate adhesion but also with Rap GTPase-activating proteins. Thus, AF6 may buffer RapGTP in resting T cells and maintain them in a non-adherent state.  相似文献   

9.
Cyclic AMP (cAMP) is a well-known intracellular signaling molecule improving barrier function in vascular endothelial cells. Here, we delineate a novel cAMP-triggered signal that regulates the barrier function. We found that cAMP-elevating reagents, prostacyclin and forskolin, decreased cell permeability and enhanced vascular endothelial (VE) cadherin-dependent cell adhesion. Although the decreased permeability and the increased VE-cadherin-mediated adhesion by prostacyclin and forskolin were insensitive to a specific inhibitor for cAMP-dependent protein kinase, these effects were mimicked by 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate, a specific activator for Epac, which is a novel cAMP-dependent guanine nucleotide exchange factor for Rap1. Thus, we investigated the effect of Rap1 on permeability and the VE-cadherin-mediated cell adhesion by expressing either constitutive active Rap1 or Rap1GAPII. Activation of Rap1 resulted in a decrease in permeability and enhancement of VE-cadherin-dependent cell adhesion, whereas inactivation of Rap1 had the counter effect. Furthermore, prostacyclin and forskolin induced cortical actin rearrangement in a Rap1-dependent manner. In conclusion, cAMP-Epac-Rap1 signaling promotes decreased cell permeability by enhancing VE-cadherin-mediated adhesion lined by the rearranged cortical actin.  相似文献   

10.
CD98 is a multifunctional heterodimeric membrane protein involved in the regulation of cell adhesion as well as amino acid transport. We show that CD98 cross-linking persistently activates Rap1 GTPase in a LFA-1-dependent manner and induces LFA-1/ICAM-1-mediated cell adhesion in lymphocytes. Specific phosphatidylinositol-3-kinase (PI3K) inhibitors suppressed both LFA-1 activation and Rap1GTP generation, and abrogation of Rap1GTP by retroviral over-expression of a specific Rap1 GTPase activating protein, SPA-1, totally inhibited the LFA-1/ICAM-1-mediated cell adhesion. These results suggest that CD98 cross-linking activates LFA-1 via the PI3K signaling pathway and induces accumulation of Rap1GTP in a LFA-1-dependent manner, which in turn mediates the cytoskeleton-dependent cell adhesion process.  相似文献   

11.
The significance of the widespread downregulation of Rap1GAP in human tumors is unknown. In previous studies we demonstrated that silencing Rap1GAP expression in human colon cancer cells resulted in sustained increases in Rap activity, enhanced spreading on collagen and the weakening of cell-cell contacts. The latter finding was unexpected based on the role of Rap1 in strengthening cell-cell adhesion and reports that Rap1GAP impairs cell-cell adhesion. We now show that Rap1GAP is a more effective inhibitor of cell-matrix compared to cell-cell adhesion. Overexpression of Rap1GAP in human colon cancer cells impaired Rap2 activity and the ability of cells to spread and migrate on collagen IV. Under the same conditions, Rap1GAP had no effect on cell-cell adhesion. Overexpression of Rap1GAP did not enhance the dissociation of cell aggregates nor did it impair the accumulation of β-catenin and E-cadherin at cell-cell contacts. To further explore the role of Rap1GAP in the regulation of cell-cell adhesion, Rap1GAP was overexpressed in non-transformed thyroid epithelial cells. Although the formation of cell-cell contacts required Rap1, overexpression of Rap1GAP did not impair cell-cell adhesion. These data indicate that transient, modest expression of Rap1GAP is compatible with cell-cell adhesion and that the role of Rap1GAP in the regulation of cell-cell adhesion may be more complex than is currently appreciated.  相似文献   

12.
Epithelial cell migration is a complex process crucial for embryonic development, wound healing and tumor metastasis. It depends on alterations in cell–cell adhesion and integrin–extracellular matrix interactions and on actomyosin-driven, polarized leading edge protrusion. The small GTPase Rap is a known regulator of integrins and cadherins that has also been implicated in the regulation of actin and myosin, but a direct role in cell migration has not been investigated. Here, we report that activation of endogenous Rap by cAMP results in an inhibition of HGF- and TGFβ-induced epithelial cell migration in several model systems, irrespective of the presence of E-cadherin adhesion. We show that Rap activation slows the dynamics of focal adhesions and inhibits polarized membrane protrusion. Importantly, forced integrin activation by antibodies does not mimic these effects of Rap on cell motility, even though it does mimic Rap effects in short-term cell adhesion assays. From these results, we conclude that Rap inhibits epithelial cell migration, by modulating focal adhesion dynamics and leading edge activity. This extends beyond the effect of integrin affinity modulation and argues for an additional function of Rap in controlling the migration machinery of epithelial cells.  相似文献   

13.
Leukocyte migration from bloodstream to tissue requires rapid, coordinated regulation of integrin-dependent adhesion and de-adhesion. In a previous study we demonstrated that inhibition of protein geranylgeranylation inhibited phorbol ester-stimulated avidity modulation of beta(1) integrin in several leukocyte cell lines. Both RhoA and Rap1 require post-translational modification by geranylgeranylation for full function. In this report we identify Rap1, not RhoA, as a critical geranylgeranylated protein mediating phorbol ester-stimulated beta(1) and beta(2) integrin-dependent adhesion of Jurkat cells. Overexpression of the Rap1-specific GTPase-activating protein, SPA-1, or inactivated form of Rap1 (N17Rap1) blocked phorbol ester-stimulated adhesion of Jurkat cells to fibronectin (alpha(4)beta(1)) and ICAM-1 (alpha(L)beta(2)). With high concentrations of fibronectin as ligand, Jurkat cells adhered spontaneously without phorbol ester stimulation. Unlike the phorbol ester-stimulated adhesion, adhesion induced by high density ligand was not dependent upon Rap1 activation or actin cytoskeleton reorganization. Thus, the "inside-out" adhesion signal induced by phorbol ester and the "outside-in" signal induced by high density ligand involve different pathways.  相似文献   

14.
The small G protein Rap1 can mediate “inside-out signaling” by recruiting effectors to the plasma membrane that signal to pathways involved in cell adhesion and cell migration. This action relies on the membrane association of Rap1, which is dictated by post-translational prenylation as well as by a stretch of basic residues within its carboxyl terminus. One feature of this stretch of acidic residues is that it lies adjacent to a functional phosphorylation site for the cAMP-dependent protein kinase PKA. This phosphorylation has two effects on Rap1 action. One, it decreases the level of Rap1 activity as measured by GTP loading and the coupling of Rap1 to RapL, a Rap1 effector that couples Rap1 GTP loading to integrin activation. Two, it destabilizes the membrane localization of Rap1, promoting its translocation into the cytoplasm. These two actions, decreased GTP loading and decreased membrane localization, are related, as the translocation of Rap1-GTP into the cytoplasm is associated with its increased GTP hydrolysis and inactivation. The consequences of this phosphorylation in Rap1-dependent cell adhesion and cell migration were also examined. Active Rap1 mutants that lack this phosphorylation site had a minimal effect on cell adhesion but strongly reduced cell migration, when compared with an active Rap1 mutant that retained the phosphorylation site. This suggests that optimal cell migration is associated with cycles of Rap1 activation, membrane egress, and inactivation, and requires the regulated phosphorylation of Rap1 by PKA.  相似文献   

15.
We previously demonstrated that TIMP-2 treatment of human microvascular endothelial cells (hMVECs) activates Rap1 via the pathway of paxillin-Crk-C3G. Here, we show that TIMP-2 overexpression in hMVECs by adenoviral infection enhances Rap1 expression, leading to further increase in Rap1-GTP. TIMP-2 expression, previously reported to inhibit cell migration, also leads to cell spreading accompanied with increased cell adhesion. HMVECs stably expressing Rap1 display a similar phenotype as hMVECs-TIMP-2, whereas the expression of inactive Rap1 mutant, Rap1(38N), leads to elongated appearance with greatly reduced cell adhesion. Furthermore, the phenotype of hMVECs-Rap1(38N) was not reversed by TIMP-2 overexpression. TIMP-2 greatly promotes the association of Rap1 with actin. Therefore, these findings suggest that TIMP-2 mediated alteration in cell morphology requires Rap1, TIMP-2 may recruit Rap1 to sites of actin cytoskeleton remodeling necessary for cell spreading, and enhanced cell adhesion by TIMP-2 expression may hinder cell migration.  相似文献   

16.
In T-lymphocytes the Ras-like small GTPase Rap1 plays an essential role in stimulus-induced inside-out activation of integrin LFA-1 (alpha(L)beta(2)) and VLA-4 (alpha(4)beta(1)). Here we show that Rap1 is also involved in the direct activation of these integrins by divalent cations or activating antibodies. Inhibition of Rap1 either by Rap GTPase-activating protein (RapGAP) or the Rap1 binding domain of RalGDS abolished both Mn(2+)- and KIM185 (anti-LFA-1)-induced LFA-1-mediated cell adhesion to intercellular adhesion molecule 1. Mn(2+)- and TS2/16 (anti-VLA-4)-induced VLA-4-mediated adhesion were inhibited as well. Interestingly, both Mn(2+), KIM185 and TS2/16 failed to induce elevated levels of Rap1GTP. These findings indicate that available levels of GTP-bound Rap1 are required for the direct activation of LFA-1 and VLA-4. Pharmacological inhibition studies demonstrated that both Mn(2+)- and KIM185-induced adhesion as well as Rap1-induced adhesion require intracellular calcium but not signaling activity of the MEK-ERK pathway. Moreover, functional calmodulin signaling was shown to be a prerequisite for Rap1-induced adhesion. From these results we conclude that in addition to stimulus-induced inside-out activation of integrins, active Rap1 is required for cell adhesion induced by direct activation of integrins LFA-1 and VLA-4. We suggest that Rap1 determines the functional availability of integrins for productive binding to integrin ligands.  相似文献   

17.
Rap1 is a small GTPase that regulates adherens junction maturation. It remains elusive how Rap1 is activated upon cell-cell contact. We demonstrate for the first time that Rap1 is activated upon homophilic engagement of vascular endothelial cadherin (VE-cadherin) at the cell-cell contacts in living cells and that MAGI-1 is required for VE-cadherin-dependent Rap1 activation. We found that MAGI-1 localized to cell-cell contacts presumably by associating with beta-catenin and that MAGI-1 bound to a guanine nucleotide exchange factor for Rap1, PDZ-GEF1. Depletion of MAGI-1 suppressed the cell-cell contact-induced Rap1 activation and the VE-cadherin-mediated cell-cell adhesion after Ca2+ switch. In addition, relocation of vinculin from cell-extracellular matrix contacts to cell-cell contacts after the Ca2+ switch was inhibited in MAGI-1-depleted cells. Furthermore, inactivation of Rap1 by overexpression of Rap1GAPII impaired the VE-cadherin-dependent cell adhesion. Collectively, MAGI-1 is important for VE-cadherin-dependent Rap1 activation upon cell-cell contact. In addition, once activated, Rap1 upon cell-cell contacts positively regulate the adherens junction formation by relocating vinculin that supports VE-cadherin-based cell adhesion.  相似文献   

18.
The small GTPase Rap is best characterized as a critical regulator of integrin-mediated cell adhesion, although its mechanism of action is not understood. Rap also influences the properties of other cell-surface receptors and biological processes, although whether these are a consequence of effects on integrins is not clear. We show here that Rap also plays an important role in the regulation of cadherin-mediated cell-cell adhesion in epithelial cells. Expression of constitutively active Rap1A restored cadherin-mediated cell-cell contacts in mesenchymal Ras-transformed Madin-Darby canine kidney cells, resulting in reversion to an epithelial phenotype. Activation of endogenous Rap via the Rap exchange factor Epac1 also antagonized hepatocyte growth factor-induced disruption of adherens junctions. Inhibition of Rap signaling resulted in disruption of epithelial cell-cell contacts. Rap activity was required for adhesion of cells to recombinant E-cadherin extracellular domains, i.e. in the absence of integrin-mediated adhesion. These findings suggest that Rap signaling positively contributes to cadherin-mediated adhesion and that this occurs independently of effects on integrin-mediated adhesion. Our results imply that Rap may function in a broader manner to regulate the function of cell-surface adhesion receptors.  相似文献   

19.
Chemokines arrest circulating lymphocytes within the vasculature through the rapid up-regulation of leukocyte integrin adhesive activity, promoting subsequent lymphocyte transmigration. However, the key regulatory molecules regulating this process have remained elusive. Here, we demonstrate that Rap1 plays a pivotal role in chemokine-induced integrin activation and migration. Rap1 was activated by secondary lymphoid tissue chemokine (SLC; CCL21) and stromal-derived factor 1 (CXCL4) treatment in lymphocytes within seconds. Inhibition of Rap1 by Spa1, a Rap1-specific GTPase-activating protein, abrogated chemokine-stimulated lymphocyte rapid adhesion to endothelial cells under flow via intercellular adhesion molecule 1. Expression of a dominant active Rap1V12 in lymphocytes stimulated shear-resistant adhesion, robust cell migration on immobilized intercellular adhesion molecule 1 and vascular cell adhesion molecule 1, and transendothelial migration under flow. We also demonstrated that Rap1V12 expression in lymphocytes induced a polarized morphology, accompanied by the redistribution of CXCR4 and CD44 to the leading edge and uropod, respectively. Spa1 effectively suppressed this polarization after SLC treatment. This unique characteristic of Rap1 may control chemokine-induced lymphocyte extravasation.  相似文献   

20.
Rap1 signalling: adhering to new models   总被引:1,自引:0,他引:1  
Ras-like GTPases are ubiquitously expressed, evolutionarily conserved molecular switches that couple extracellular signals to various cellular responses. Rap1, the closest relative of Ras, has attracted much attention because of the possibility that it regulates Ras-mediated signalling. Rap1 is activated by extracellular signals through several regulatory proteins, and it might function in diverse processes, ranging from modulation of growth and differentiation to secretion, integrin-mediated cell adhesion and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号