首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed linkage map of lettuce was constructed using 53 genetic markers including 41 restriction fragment length polymorphism (RFLP) loci, five downy mildew resistance genes, four isozyme loci and three morphological markers. The genetic markers were distributed into nine linkage groups and cover 404 cM which may be 25-30% of the lettuce genome. The majority (31 of 34) of the RFLP probes detected single segregating loci, although seven of these may have been homologous to further monomorphic loci. When several loci were detected by a single probe, the loci were generally linked, suggesting tandem duplications. One probe, however, detected loci in three linkage groups suggesting translocations. The five downy mildew resistance genes (Dm1, Dm3, Dm4, Dm5/8 and Dm13), segregating in the Calmar x Kordaat cross, represented each of the four resistance gene linkage groups. Dm5/8 is flanked by two cDNA loci, each located 10 cM away. These flanking markers will be used to study the source of variation in downy mildew genes and are also part our strategy to clone resistance genes.  相似文献   

2.
The major cluster of resistance genes in lettuce cv. Diana contains approximately 32 nucleotide binding site-leucine-rich repeat encoding genes. Previous molecular dissection of this complex region had identified a large gene, RGC2B, as a candidate for encoding the downy mildew resistance gene, Dm3. This article describes genetic and transgenic complementation data that demonstrated RGC2B is necessary and sufficient to confer resistance with Dm3 specificity. Ethylmethanesulphonate was used to induce mutations to downy mildew susceptibility in cv. Diana (Dm1, Dm3, Dm7, and Dm8). Nineteen families were identified with a complete loss of resistance in one of the four resistance specificities. Sequencing revealed a variety of point mutations in RGC2B in the six dm3 mutants. Losses of resistance were due to single changes in amino acid sequence or a change in an intron splice site. These mutations did not cluster in any particular region of RGC2B. A full-length genomic copy of RGC2B was isolated from a lambdaphage library and introduced into two genotypes of lettuce. Transgenics expressing RGC2B exhibited resistance to all isolates expressing Avr3 from a wide range of geographical origins. In a wildtype Dm3-expressing genotype, many of the RGC2 family members are expressed at low levels throughout the plant.  相似文献   

3.
Two sets of overlapping experiments were conducted to examine recombination and spontaneous mutation events within clusters of resistance genes in lettuce. Multiple generations were screened for recombinants using PCR-based markers flanking Dm3. The Dm3 region is not highly recombinagenic, exhibiting a recombination frequency 18-fold lower than the genome average. Recombinants were identified only rarely within the cluster of Dm3 homologs and no crossovers within genes were detected. Three populations were screened for spontaneous mutations in downy mildew resistance. Sixteen Dm mutants were identified corresponding to spontaneous mutation rates of 10(-3) to 10(-4) per generation for Dm1, Dm3, and Dm7. All mutants carried single locus, recessive mutations at the corresponding Dm locus. Eleven of the 12 Dm3 mutations were associated with large chromosome deletions. When recombination could be analyzed, deletion events were associated with exchange of flanking markers, consistent with unequal crossing over; however, although the number of Dm3 paralogs was changed, no novel chimeric genes were detected. One mutant was the result of a gene conversion event between Dm3 and a closely related homolog, generating a novel chimeric gene. In two families, spontaneous deletions were correlated with elevated levels of recombination. Therefore, the short-term evolution of the major cluster of resistance genes in lettuce involves several genetic mechanisms including unequal crossing over and gene conversion.  相似文献   

4.
The second largest cluster of resistance genes in lettuce contains at least two downy mildew resistance specificities, Dm5/8 and Dm10, as well as Tu, providing resistance against turnip mosaic virus, and plr, a recessive gene conferring resistance against Plasmopara lactucae-radicis, a root infecting downy mildew. In the present paper four additional genetic markers have been added to this cluster, three RAPD markers and one RFLP marker, CL1795. CL1795 is a member of a multigene family related to triose phosphate isomerase; other members of this family map to the other two major clusters of resistance genes in lettuce. Seven RAPD markers in the region were converted into sequence characterized amplified regions (SCARs) and used in the further analysis of the region and the mapping of Dm10. Three different segregating populations were used to map the four resistance genes relative to molecular markers. There were no significant differences in gene order or rate of recombination between the three crosses. This cluster of resistance genes spans 6.4 cM, with Dm10 1.2 cM from Dm8. Marker analysis of 20 cultivars confirmed multiple origins for Dm5/8 specificity. Two different Lactuca serriola origins for the Du5/8 specificity had previously been described and originally designated as either Dm5 or Dm8. Some ancient cultivars also had the same specificity. Previously, due to lack of recombination in genetic analyses and the same resistance specificities, it was assumed that Dm5 and Dm8 were determined by the same gene. However, molecular marker analysis clearly identified genotypes characteristic of each source. Therefore, Dm5/8 specificity is either ancient and widespread in L. serriola and some L. sativa, or else has arisen on multiple occasions as alleles at the same locus or at linked loci.  相似文献   

5.
The major cluster of disease resistance genes in lettuce (Lactuca sativa) contains at least nine downy mildew resistance genes (Dm) spanning a genetic distance of 20 cM and a physical distance of at least 6 Mb. Nine molecular markers that were genetically tightly linked toDm3 were used to analyze nine independent deletion mutants and construct a map of the region surroundingDm3. This analysis identified a linear order of deletion breakpoints and markers along the chromosome. There was no evidence for chromosomal rearrangements associated with the deletions. The region is not highly recombinagenic and the deletion breakpoints provided greater genetic resolution than meiotic recombinants. The region contains a mixture of high- and low-copy-number sequences; no single-copy sequences were detected. Three markers hybridized to low-copy-number families of sequences that are duplicated predominantly close toDm3. This was not true for sequences related to the triose-phosphate isomerase gene; these had been shown previously to be linked toDm3, as well as to two independent clusters ofDm genes, and elsewhere in the genome. Two spontaneous mutants ofDm3 were identified; several markers flankingDm3 are absent in one of these two mutants. The stability of theDm3 region was also studied by analyzing the genotypes of diverse related cultivars. The 1.5 Mb region surroundingDm3 has remained stable through many generations of breeding with and without selection forDm3 activity.  相似文献   

6.
The major cluster of disease resistance genes in lettuce (Lactuca sativa) contains at least nine downy mildew resistance genes (Dm) spanning a genetic distance of 20 cM and a physical distance of at least 6 Mb. Nine molecular markers that were genetically tightly linked toDm3 were used to analyze nine independent deletion mutants and construct a map of the region surroundingDm3. This analysis identified a linear order of deletion breakpoints and markers along the chromosome. There was no evidence for chromosomal rearrangements associated with the deletions. The region is not highly recombinagenic and the deletion breakpoints provided greater genetic resolution than meiotic recombinants. The region contains a mixture of high- and low-copy-number sequences; no single-copy sequences were detected. Three markers hybridized to low-copy-number families of sequences that are duplicated predominantly close toDm3. This was not true for sequences related to the triose-phosphate isomerase gene; these had been shown previously to be linked toDm3, as well as to two independent clusters ofDm genes, and elsewhere in the genome. Two spontaneous mutants ofDm3 were identified; several markers flankingDm3 are absent in one of these two mutants. The stability of theDm3 region was also studied by analyzing the genotypes of diverse related cultivars. The 1.5 Mb region surroundingDm3 has remained stable through many generations of breeding with and without selection forDm3 activity.  相似文献   

7.
I Paran  R Kesseli  R Michelmore 《Génome》1991,34(6):1021-1027
Near-isogenic lines were used to identify restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers linked to genes for resistance to downy mildew (Dm) in lettuce. Two pairs of near-isogenic lines that differed for Dm1 plus Dm3 and one pair of near-isogenic lines that differed for Dm11 were used as sources of DNA. Over 500 cDNAs and 212 arbitrary 10-mer oligonucleotide primers were screened for their ability to detect polymorphism between the near-isogenic lines. Four RFLP markers and four RAPD markers were identified as linked to the Dm1 and Dm3 region. Dm1 and Dm3 are members of a cluster of seven Dm genes. Marker CL922 was absolutely linked to Dm15 and Dm16, which are part of this cluster. Six RAPD markers were identified as linked to the Dm11 region. The use of RAPD markers allowed us to increase the density of markers in the two Dm regions in a short time. These regions were previously only sparsely populated with RFLP markers. The rapid screening and identification of tightly linked markers to the target genes demonstrated the potential of RAPD markers for saturating genetic maps.  相似文献   

8.
Two accessions of Arabidopsis thaliana (Ksk-1 and Ksk-2) were used to identify and map three loci ( RAC1 , RAC2 and RAC3 ) of genes that confer R esistance to A lbugo c andida (white rust). The phenotypes associated with these genes were classified as either FN (necrotic f lecks on upper surface of cotyledons and n o blisters) for RAC2 and RAC3, or FYN ( f lecks surrounded by y ellowing and n o blisters) for RAC1 . Both phenotypes exhibited rapid death of host cells penetrated by the parasite (hypersensitive response), with callose deposition commonly encasing the haustorium. F6 recombinant inbred lines were produced specifically for the purpose of mapping each RAC locus relative to molecular markers. Dominant resistance at the locus RAC1 in Ksk-1 was previously mapped to chromosome 1 between RFLP markers m253 and m254, and co-segregating with a downy mildew resistance specificity RPP9 in the accession Wei-0. We report here a fine-scale map interval and co-segregating markers for this locus, which in turn enabled mapping of a previously unnoticed source of resistance in Ksk-1 designated RAC3 that exhibits an FN phenotype hyperstatic to the FYN phenotype of RAC1. RAC3 is closely linked to the RPP8/HRT on chromosome 5, a locus which contains specificities for resistance to downy mildew and turnip crinkle virus. Recombinant inbreds also enabled mapping of recessive resistance at RAC2 in Ksk-2 to the bottom arm of chromosome 3, in the 6 cM interval between two downy mildew resistance loci ( RPP1 and RPP13 ) .  相似文献   

9.

Key message

Downy mildew resistance across days post-inoculation, experiments, and years in two interspecific grapevine F1 families was investigated using linear mixed models and Bayesian networks, and five new QTL were identified.

Abstract

Breeding grapevines for downy mildew disease resistance has traditionally relied on qualitative gene resistance, which can be overcome by pathogen evolution. Analyzing two interspecific F1 families, both having ancestry derived from Vitis vinifera and wild North American Vitis species, across 2 years and multiple experiments, we found multiple loci associated with downy mildew sporulation and hypersensitive response in both families using a single phenotype model. The loci explained between 7 and 17% of the variance for either phenotype, suggesting a complex genetic architecture for these traits in the two families studied. For two loci, we used RNA-Seq to detect differentially transcribed genes and found that the candidate genes at these loci were likely not NBS-LRR genes. Additionally, using a multiple phenotype Bayesian network analysis, we found effects between the leaf trichome density, hypersensitive response, and sporulation phenotypes. Moderate–high heritabilities were found for all three phenotypes, suggesting that selection for downy mildew resistance is an achievable goal by breeding for either physical- or non-physical-based resistance mechanisms, with the combination of the two possibly providing durable resistance.
  相似文献   

10.
Inheritance of resistance to downy mildew (Hyaloperonospora parasitica) in Chinese cabbage (Brassica rapa ssp. pekinensis) was studied using inbred parental lines RS1 and SS1 that display strong resistance and severe susceptibility, respectively. F(1), F(2), and BC(1)F(1) populations were evaluated for their responses to downy mildew infection. Resistance to downy mildew was conditioned by a single dominant locus designated BrRHP1. A random amplified polymorphic DNA (RAPD) marker linked to BrRHP1 was identified using bulked segregant analysis and two molecular markers designated BrPERK15A and BrPERK15B were developed. BrPERK15B was polymorphic between the parental lines used to construct the reference linkage map of B. rapa, allowing the mapping of the BrRHP1 locus to the A1 linkage group. Using bacterial artificial chromosome clone sequences anchored to the A1 linkage group, six simple polymerase chain reaction (PCR) markers were developed for use in marker-assisted breeding of downy mildew resistance in Chinese cabbage. Four simple PCR markers flanking the BrRHP1 locus were shown to be collinear with the long-arm region of Arabidopsis chromosome 3. The two closely linked flanking markers delimit the BrRHP1 locus within a 2.2-Mb interval of this Arabidopsis syntenic region.  相似文献   

11.
Downy mildew (Plasmopara halstedii (Farl.) Berlese et de Toni) is a serious foliar pathogen of cultivated sunflower (Helianthus annuus L.). Genetic resistance is conditioned by several linked downy mildew resistance gene specificities in the HaRGC1 cluster of TIR-NBS-LRR resistance gene candidates (RGCs) on linkage group 8. The complexity and diversity of the HaRGC1 cluster was assessed by multilocus intron fragment length polymorphism (IFLP) genotyping using a single pair of primers flanking a hypervariable intron located between the TIR and NBS domains. Two to 23 bands were amplified per germplasm accession. The size of the included intron ranged from 89 to 858 nucleotides. Forty-eight unique markers were distinguished among 24 elite inbred lines, six partially isogenic inbred lines, nine open-pollinated populations, four Native American land races, and 20 wild H. annuus populations. Nine haplotypes (based on 24 RGCs) were identified among elite inbred lines and were correlated with known downy mildew resistance specificities. Sixteen out of 39 RGCs identified in wild H. annuus populations were not observed in elite germplasm. Five partially isogenic downy mildew resistant lines developed from wild H. annuus and H. praecox donors carried eight RGCs not found in other elite inbred lines. Twenty-four HaRGC1 loci were mapped to a 2-4 cM segment of linkage group 8. The multilocus IFLP marker and duplicated, hypervariable microsatellite markers tightly linked to the HaRGC1 cluster are powerful tools for distinguishing downy mildew resistance gene specificities and identifying and introgressing new downy mildew resistance gene specificities from wild sunflowers.  相似文献   

12.
Disease resistance gene candidates (RGCs) belonging to the nucleotide-binding site (NBS) superfamily have been cloned from numerous crop plants using highly conserved DNA sequence motifs. The aims of this research were to (i) isolate genomic DNA clones for RGCs in cultivated sunflower (Helianthus annuus L.) and (ii) map RGC markers and Pl1, a gene for resistance to downy mildew (Plasmopara halstedii (Farl.) Berl. & de Toni) race 1. Degenerate oligonucleotide primers targeted to conserved NBS DNA sequence motifs were used to amplify RGC fragments from sunflower genomic DNA. PCR products were cloned, sequenced, and assigned to 11 groups. RFLP analyses mapped six RGC loci to three linkage groups. One of the RGCs (Ha-4W2) was linked to Pl1, a downy mildew resistance gene. A cleaved amplified polymorphic sequence (CAPS) marker was developed for Ha-4W2 using gene-specific oligonucleotide primers. Downy mildew susceptible lines (HA89 and HA372) lacked a 276-bp Tsp5091 restriction fragment that was present in downy mildew resistant lines (HA370, 335, 336, 337, 338, and 339). HA370 x HA372 F2 progeny were genotyped for the Ha-4W2 CAPS marker and phenotyped for resistance to downy mildew race 1. The CAPS marker was linked to but did not completely cosegregate with Pl1 on linkage group 8. Ha-4W2 was found to comprise a gene family with at least five members. Although genetic markers for Ha-4W2 have utility for marker-assisted selection, the RGC detected by the CAPS marker has been ruled out as a candidate gene for Pl1. Three of the RGC probes were monomorphic between HA370 and HA372 and still need to be mapped and screened for linkage to disease resistance loci.  相似文献   

13.
Resistance genes can exhibit heterogeneous patterns of variation. However, there are few data on their frequency and variation in natural populations. We analysed the frequency and variation of the resistance gene Dm3, which confers resistance to Bremia lactucae (downy mildew) in 1033 accessions of Lactuca serriola (prickly lettuce) from 49 natural populations. Inoculations with an isolate of Bremia lactucae carrying avirulence gene Avr3 indicated that the frequency of Dm3 in natural populations of L. serriola was very low. Molecular analysis demonstrated that Dm3 was present in only one of the 1033 wild accessions analysed. The sequence of the 5' region of Dm3 was either highly conserved among accessions, or absent. In contrast, frequent chimeras were detected in the 3' leucine-rich repeat-encoding region. Therefore low frequency of the Dm3 specificity in natural populations was due to either the recent evolution of Dm3 specificity, or deletions of the whole gene as well as variation in 3' region caused by frequent gene conversions. This is the most extensive analysis of the prevalence of a known disease resistance gene to date, and indicates that the total number of resistance genes in a species may be very high. This has implications for the scales of germplasm conservation and exploitation of sources of resistance.  相似文献   

14.
Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F(2) population based on a resistant L. saligna x susceptible L. sativa cross. This F(2) population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F(2) population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene ( R39) involved in the race-specific resistance and three QTLs ( RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F(2) population. The perspectives for breeding for durable resistance are discussed.  相似文献   

15.
Quantitative trait loci (QTLs) for downy mildew resistance in maize were identified based on co-segregation with linked restriction fragment length polymorphisms or simple sequence repeats in 220 F2 progeny from a cross between susceptible and resistant parents. Disease response was assessed on F3 families in nurseries in Egypt, Thailand, and South Texas and after inoculation in a controlled greenhouse test. Heritability of the disease reaction was high (around 93% in Thailand). One hundred and thirty polymorphic markers were assigned to the ten chromosomes of maize with LOD scores exceeding 4.9 and covering about 1,265 cM with an average interval length between markers of 9.5 cM. About 90% of the genome is located within 10 cM of the nearest marker. Three putative QTLs were detected in association with resistance to downy mildew in different environments using composite interval mapping. Despite environmental and symptom differences, one locus on chromosome 2 had a major effect and explained up to 70% of the phenotypic variation in Thailand where disease pressure was the highest. The other two QTLs on chromosome 3 and chromosome 9 had minor effects; each explained no more than 4% of the phenotypic variation. The three QTLs appeared to have additive effects on resistance, identifying one major gene and two minor genes that contribute to downy mildew resistance.  相似文献   

16.
The major genes controlling sunflower downy mildew resistance have been designated as Pl genes. Ten of the more than 20 Pl genes reported have been mapped. In this study, we report the molecular mapping of gene Pl(16) in a sunflower downy mildew differential line, HA-R4. It was mapped on the lower end of linkage group (LG) 1 of the sunflower reference map, with 12 markers covering a distance of 78.9 cM. One dominant simple sequence repeat (SSR) marker, ORS1008, co-segregated with Pl(16), and another co-dominant expressed sequence tag (EST)-SSR marker, HT636, was located 0.3 cM proximal to the Pl(16) gene. The HT636 marker was also closely linked to the Pl(13) gene in another sunflower differential line, HA-R5. Thus the Pl(16) and Pl(13) genes were mapped to a similar position on LG 1 that is different from the previously reported Pl(14) gene. When the co-segregating and tightly linked markers for the Pl(16) gene were applied to other germplasms or hybrids, a unique band pattern for the ORS1008 marker was detected in HA-R4 and HA-R5 and their F(1) hybrids. This is the first report to provide two tightly linked markers for both the Pl(16) and Pl(13) genes, which will facilitate marker-assisted selection in sunflower resistance breeding, and provide a basis for the cloning of these genes.  相似文献   

17.
Downy mildew is one of the most destructive diseases of maize in subtropical and tropical regions in Asia. As a prerequisite for improving downy mildew resistance in maize, we analyzed quantitative trait loci (QTLs) involved in resistance to the important downy mildew pathogens--Peronosclerospora sorghi (sorghum downy mildew) and P. heteropogoni (Rajasthan downy mildew) in India, P. maydis (Java downy mildew) in Indonesia, P. zeae in Thailand and P. philippinensis in the Philippines--using a recombinant inbred line population derived from a cross between Ki3 (downy mildew resistant) and CML139 (susceptible). Resistance was evaluated as percentage disease incidence in replicated field trials at five downy mildew 'hotspots' in the four countries. Heritability estimates of individual environments ranged from 0.58 to 0.75 with an across environment heritability of 0.50. Composite interval mapping was applied for QTL detection using a previously constructed restriction fragment length polymorphism linkage map. The investigation resulted in the identification of six genomic regions on chromosomes 1, 2, 6, 7 and 10 involved in the resistance to the downy mildews under study, explaining, in total, 26-57% of the phenotypic variance for disease response. Most QTL alleles conferring resistance to the downy mildews were from Ki3. All QTLs showed significant QTL x environment interactions, suggesting that the expression of the QTL may be environment-dependent. A strong QTL on chromosome 6 was stable across environments, significantly affecting disease resistance at the five locations in four Asian countries. Simple-sequence repeat markers tightly linked to this QTL were identified for potential use in marker-assisted selection.  相似文献   

18.
 A candidate-gene approach to analyse the resistance of plants to phytopathogenic fungi is presented. The resistance of sunflower (Helianthus annuus L.) to downy mildew (Plasmopara halstedii) shows a gene-for-gene interaction (monogenic resistance), whereas resistance to white rot (Sclerotinia sclerotiorum) is quantitative, with different levels of resistance for different plant parts. By homology cloning, probes were obtained homologous to some plant resistance genes (nucleotide binding site-like, NBS, genes and serine-threonine protein kinase-like, PK, genes). These clones were used as probes for linkage mapping of the corresponding genes. It was demonstrated that at least three NBS-like loci are located on linkage-group 1, in the region where downy mildew resistance loci have been described. Quantitative trait loci for S. sclerotiorum resistance to penetration or extension of the mycelium in different tissues were studied in three crosses. Major QTLs for resistance were found on linkage group 1, with up to 50% of the phenotypic variability explained by peaks at the map position of the PK locus, 25 cM from the downy mildew loci. Received: 24 September 1997 / Accepted: 21 October 1997  相似文献   

19.
At least 10 Dm genes conferring resistance to the oomycete downy mildew fungus Bremia lactucae map to the major resistance cluster in lettuce. We investigated the structure of this cluster in the lettuce cultivar Diana, which contains Dm3. A deletion breakpoint map of the chromosomal region flanking Dm3 was saturated with a variety of molecular markers. Several of these markers are components of a family of resistance gene candidates (RGC2) that encode a nucleotide binding site and a leucine-rich repeat region. These motifs are characteristic of plant disease resistance genes. Bacterial artificial chromosome clones were identified by using duplicated restriction fragment length polymorphism markers from the region, including the nucleotide binding site-encoding region of RGC2. Twenty-two distinct members of the RGC2 family were characterized from the bacterial artificial chromosomes; at least two additional family members exist. The RGC2 family is highly divergent; the nucleotide identity was as low as 53% between the most distantly related copies. These RGC2 genes span at least 3.5 Mb. Eighteen members were mapped on the deletion breakpoint map. A comparison between the phylogenetic and physical relationships of these sequences demonstrated that closely related copies are physically separated from one another and indicated that complex rearrangements have shaped this region. Analysis of low-copy genomic sequences detected no genes, including RGC2, in the Dm3 region, other than sequences related to retrotransposons and transposable elements. The related but divergent family of RGC2 genes may act as a resource for the generation of new resistance phenotypes through infrequent recombination or unequal crossing over.  相似文献   

20.
The resistance of sunflower, Helianthus annuus L., to downy mildew, caused by Plasmopara halstedii, is conferred by major genes denoted by Pl. Using degenerate and specific primers, 16 different resistance gene analogs (RGAs) have been cloned and sequenced. Sequence comparison and Southern-blot analysis distinguished six classes of RGA. Two of these classes correspond to TIR-NBS-LRR sequences while the remaining four classes correspond to the non-TIR-NBS-LRR type of resistance genes. The genetic mapping of these RGAs on two segregating F2 populations showed that the non-TIR-NBS-LRR RGAs are clustered and linked to the Pl5/ Pl8 locus for resistance to downy mildew in sunflower. These and other results indicate that different Pl loci conferring resistance to the same pathogen races may contain different sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号