首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi Aspergillus spp. are able to infect all tissues and organs and often cause invasive mycosis (aspergillosis), which is usually a fatal disease, especially in the patients with compromised immune system. Microbiological monitoring of these infectious agents is necessary in modem medical facilities. Mobile elements can be used as markers for identification of species and strains of Aspergillus found indoors as well as in aspergillosis diagnostics. Genomic sequences of two representative Aspergillus species, A. fumigatus and A. nidulans, were analysed in silico in order to detect LTR retrotransposons. We found considerable differences in the composition of retrotransposon families between two studied species. One of the detected families, which is present in both studied Aspergillus species, is phylogenetically quite different from all other known fungal retrotransposons. The majority of elements are represented by damaged copies. Nevertheless, we describe for the first time allegedly non-damaged LTR copies that contain intact ORFs and could be active.  相似文献   

2.
3.
It is very interesting that the only extant marine amphibian is the marine frog, Fejervarya cancrivora. This study investigated the reasons for this apparent rarity by conducting a phylogenetic tree analysis of the complete mitochondrial genomes from 14 amphibians, 67 freshwater fishes, four migratory fishes, 35 saltwater fishes, and one hemichordate. The results showed that amphibians, living fossil fishes, and the common ancestors of modern fishes are phylogenetically separated. In general, amphibians, living fossil fishes, saltwater fishes, and freshwater fishes are clustered in different clades. This suggests that the ancestor of living amphibians arose from a type of primordial freshwater fish, rather than the coelacanth, lungfish, or modern saltwater fish. Modern freshwater fish and modern saltwater fish were probably separated from a common ancestor by a single event, caused by crustal movement.  相似文献   

4.
Several distinct families of endogenous retroviruses exist in the genomes of primates. Most of them are remnants of ancient germ-line infections. The human endogenous retrovirus family HERV-K represents the unique known case of endogenous retrovirus that amplified in the human genome after the divergence of human and chimpanzee lineages. There are two types of HERV-K proviral genomes differing by the presence or absence of 292 bp in the pol-env boundary. Human-specific insertions exist for both types. The analyses shown in the present work reveal that several lineages of type 1 and type 2 HERV-K proviruses remained transpositionally active after the human/chimpanzee split. The data also reflect the important role of mosaic evolution (either by recombination or gene conversion) during the evolutionary history of HERV-K. Received: 5 February 2001 / Accepted: 22 March 2001  相似文献   

5.
Ty3/gypsy elements represent one of the most abundant and diverse LTR-retrotransposon (LTRr) groups in the Anopheles gambiae genome, but their evolutionary dynamics have not been explored in detail. Here, we conduct an in silico analysis of the distribution and abundance of the full complement of 1045 copies in the updated AgamP3 assembly. Chromosomal distribution of Ty3/gypsy elements is inversely related to arm length, with densities being greatest on the X, and greater on the short versus long arms of both autosomes. Taking into account the different heterochromatic and euchromatic compartments of the genome, our data suggest that the relative abundance of Ty3/gypsy LTRrs along each chromosome arm is determined mainly by the different proportions of heterochromatin, particularly pericentric heterochromatin, relative to total arm length. Additionally, the breakpoint regions of chromosomal inversion 2La appears to be a haven for LTRrs. These elements are underrepresented more than 7-fold in euchromatin, where 33% of the Ty3/gypsy copies are associated with genes. The euchromatin on chromosome 3R shows a faster turnover rate of Ty3/gypsy elements, characterized by a deficit of proviral sequences and the lowest average sequence divergence of any autosomal region analyzed in this study. This probably reflects a principal role of purifying selection against insertion for the preservation of longer conserved syntenyc blocks with adaptive importance located in 3R. Although some Ty3/gypsy LTRrs show evidence of recent activity, an important fraction are inactive remnants of relatively ancient insertions apparently subject to genetic drift. Consistent with these computational predictions, an analysis of the occupancy rate of putatively older insertions in natural populations suggested that the degenerate copies have been fixed across the species range in this mosquito, and also are shared with the sibling species Anopheles arabiensis.  相似文献   

6.
Baboons (genus Papio) are an interesting phylogeographical primate model for the evolution of savanna species during the Pleistocene. Earlier studies, based on partial mitochondrial sequence information, revealed seven major haplogroups indicating multiple para‐ and polyphylies among the six baboon species. The most basal splits among baboon lineages remained unresolved and the credibility intervals for divergence time estimates were rather large. Assuming that genetic variation within the two studied mitochondrial loci so far was insufficient to infer the apparently rapid early radiation of baboons we used complete mitochondrial sequence information of ten specimens, representing all major baboon lineages, to reconstruct a baboon phylogeny and to re‐estimate divergence times. Our data confirmed the earlier tree topology including the para‐ and polyphyletic relationships of most baboon species; divergence time estimates are slightly younger and credibility intervals narrowed substantially, thus making the estimates more precise. However, the most basal relationships could not be resolved and it remains open whether (1) the most southern population of baboons diverged first or (2) a major split occurred between southern and northern clades. Our study shows that complete mitochondrial genome sequences are more effective to reconstruct robust phylogenies and to narrow down estimated divergence time intervals than only short portions of the mitochondrial genome, although there are also limitations in resolving phylogenetic relationships. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Afrotherian phylogeny as inferred from complete mitochondrial genomes   总被引:5,自引:0,他引:5  
Afrotheria is a huge assemblage of various mammals encompassing six orders that were once classified as distantly related groups. This superordinal relationship may have resulted from the break-up of Gondowanaland followed by the isolation of the African continent between 105 and 40 million years ago. Although the monophyly of Afrotheria is well supported by recent molecular studies, the interrelationships within afrotherian mammals remain unclarified. In this study, we determined the sequence of the complete mitochondrial genomes of hyrax, golden mole, and elephant shrew. These sequences were compared with those of other eutherians to analyze the phylogenetic relationships among afrotherians and, in particular, those among paenungulates. Our mitochondrial genome analysis supports the monophyly of Tethytheria.  相似文献   

8.
9.
Bhutkar A  Schaeffer SW  Russo SM  Xu M  Smith TF  Gelbart WM 《Genetics》2008,179(3):1657-1680
The availability of 12 complete genomes of various species of genus Drosophila provides a unique opportunity to analyze genome-scale chromosomal rearrangements among a group of closely related species. This article reports on the comparison of gene order between these 12 species and on the fixed rearrangement events that disrupt gene order. Three major themes are addressed: the conservation of syntenic blocks across species, the disruption of syntenic blocks (via chromosomal inversion events) and its relationship to the phylogenetic distribution of these species, and the rate of rearrangement events over evolutionary time. Comparison of syntenic blocks across this large genomic data set confirms that genetic elements are largely (95%) localized to the same Muller element across genus Drosophila species and paracentric inversions serve as the dominant mechanism for shuffling the order of genes along a chromosome. Gene-order scrambling between species is in accordance with the estimated evolutionary distances between them and we find it to approximate a linear process over time (linear to exponential with alternate divergence time estimates). We find the distribution of synteny segment sizes to be biased by a large number of small segments with comparatively fewer large segments. Our results provide estimated chromosomal evolution rates across this set of species on the basis of whole-genome synteny analysis, which are found to be higher than those previously reported. Identification of conserved syntenic blocks across these genomes suggests a large number of conserved blocks with varying levels of embryonic expression correlation in Drosophila melanogaster. On the other hand, an analysis of the disruption of syntenic blocks between species allowed the identification of fixed inversion breakpoints and estimates of breakpoint reuse and lineage-specific breakpoint event segregation.  相似文献   

10.
Repeat-induced point mutation (RIP) is the most intriguing among the known mechanisms of repeated sequences inactivation because of its ability to produce irreversible mutation of repeated DNA. Discovered for the first time in Neurospora crassa, RIP is characterized by C:G to T:A transitions in duplicated sequences. The mechanisms and distribution of RIP are still purely investigated. Mobile elements are a common target for the processes which lead to homology-dependent silencing because of their ability to propagate themselves. We have done comparative analysis of LTR retrotransposons in genomic scale from genomes of two aspergilli fungi--Aspergillus funmigatus and A. nidulans, based on several copies we reconstructed "de-RIP" retroelements. Investigations of frequencies of CpG, CpA and TpG sites, which are potential targets for mutagenesis, showed the much lower frequencies of these sites in mobile elements in comparison with structural genes. LTR retrotransposons from A. fumigatus and A. nidulans have different ratio of types of substitutions. Our analysis indicates that two investigated fungi have or had the RIP-like processes for repeated sequences inactivation, in various modes. Whereas in A. fumigatus the context for mutagenesis consists of both CpG and CpA sites, in A. nidulans inactivation seems to proceed only on CpG dinucleotides. The present investigation gives a theoretical background for planning of experimental studying of RIP inactivation in aspergilli.  相似文献   

11.
Phylogenetic relationships among the salamander families have been difficult to resolve, largely because the window of time in which major lineages diverged was very short relative to the subsequently long evolutionary history of each family. We present seven new complete mitochondrial genomes representing five salamander families that have no or few mitogenome records in GenBank in order to assess the phylogenetic relationships of all salamander families from a mitogenomic perspective. Phylogenetic analyses of two data sets—one combining the entire mitogenome sequence except for the D-loop, and the other combining the deduced amino acid sequences of all 13 mitochondrial protein-coding genes—produce nearly identical well-resolved topologies. The monophyly of each family is supported, including the controversial Proteidae. The internally fertilizing salamanders are demonstrated to be a clade, concordant with recent results using nuclear genes. The internally fertilizing salamanders include two well-supported clades: one is composed of Ambystomatidae, Dicamptodontidae, and Salamandridae, the other Proteidae, Rhyacotritonidae, Amphiumidae, and Plethodontidae. In contrast to results from nuclear loci, our results support the conventional morphological hypothesis that Sirenidae is the sister-group to all other salamanders and they statistically reject the hypothesis from nuclear genes that the suborder Cryptobranchoidea (Cryptobranchidae + Hynobiidae) branched earlier than the Sirenidae. Using recently recommended fossil calibration points and a “soft bound” calibration strategy, we recalculated evolutionary timescales for tetrapods with an emphasis on living salamanders, under a Bayesian framework with and without a rate-autocorrelation assumption. Our dating results indicate: (i) the widely used rate-autocorrelation assumption in relaxed clock analyses is problematic and the accuracy of molecular dating for early lissamphibian evolution is questionable; (ii) the initial diversification of living amphibians occurred later than recent estimates would suggest, from the Late Carboniferous to the Early Permian (294 MYA); (iii) living salamanders originated during the Early Jurassic (183 MYA), and (iv) most salamander families had diverged from each other by Late Cretaceous. A likelihood-based ancestral area reconstruction analysis favors a distribution throughout Laurasia in the Early Jurassic for the common ancestor of all living salamanders.  相似文献   

12.
Evolutionary dynamics of grass genomes   总被引:31,自引:4,他引:27  
  相似文献   

13.

Background  

Gene duplication and gene loss during the evolution of eukaryotes have hindered attempts to estimate phylogenies and divergence times of species. Although current methods that identify clusters of orthologous genes in complete genomes have helped to investigate gene function and gene content, they have not been optimized for evolutionary sequence analyses requiring strict orthology and complete gene matrices. Here we adopt a relatively simple and fast genome comparison approach designed to assemble orthologs for evolutionary analysis. Our approach identifies single-copy genes representing only species divergences (panorthologs) in order to minimize potential errors caused by gene duplication. We apply this approach to complete sets of proteins from published eukaryote genomes specifically for phylogeny and time estimation.  相似文献   

14.
There has been debate over the mechanisms that control the copy number of transposable elements in the genome of Drosophila melanogaster. Target sites in D. melanogaster populations are occupied at low frequencies, suggesting that there is some form of selection acting against transposable elements. Three main theories have been proposed to explain how selection acts against transposable elements: insertions of a copy of a transposable element are selected against; chromosomal rearrangements caused by ectopic exchange between element copies are selected against; or the process of transposition itself is selected against. The three theories give different predictions for the pattern of transposable element insertions in the chromosomes of D. melanogaster. We analysed the abundance of six LTR (long terminal repeat) retrotransposons on the X and fourth chromosomes of multiple strains of D. melanogaster, which we compare with the predictions of each theory. The data suggest that no one theory can account for the insertion patterns of all six retrotransposons. Comparing our results with earlier work using these transposable element families, we find a significant correlation between studies in the particular model of copy number regulation supported by the proportion of elements on the X for the different transposable element families. This suggests that different retrotransposon families are regulated by different mechanisms.  相似文献   

15.
16.
Retrotransposons are an ubiquitous component of plant genomes, especially abundant in species with large genomes. Populus trichocarpa has a relatively small genome, which was entirely sequenced; however, studies focused on poplar retrotransposons dynamics are rare. With the aim to study the retrotransposon component of the poplar genome, we have scanned the complete genome sequence searching full-length long-terminal repeat (LTR) retrotransposons, i.e., characterised by two long terminal repeats at the 5′ and 3′ ends. A computational approach based on detection of conserved structural features, on building multiple alignments, and on similarity searches was used to identify 1,479 putative full-length LTR retrotransposons. Ty1-copia elements were more numerous than Ty3-gypsy. However, many LTR retroelements were not assigned to any superfamily because lacking of diagnostic features and non-autonomous. LTR retrotransposon remnants were by far more numerous than full-length elements, indicating that during the evolution of poplar, large amplification of these elements was followed by DNA loss. Within superfamilies, Ty3-gypsy families are made of more members than Ty1-copia ones. Retrotransposition occurred with increasing frequency following the separation of Populus sections, with different waves of retrotransposition activity between Ty3-gypsy and Ty1-copia elements. Recently inserted elements appear more frequently expressed than older ones. Finally, different levels of activity of retrotransposons were observed according to their position and their density in the linkage groups. On the whole, the results support the view of retrotransposons as a community of different organisms in the genome, whose activity (both retrotransposition and DNA loss) has heavily impacted and probably continues to impact poplar genome structure and size.  相似文献   

17.
We estimated the number of copies for the long terminal repeat (LTR) retrotransposable element roo in a set of long-standing Drosophila melanogaster mutation-accumulation full-sib lines and in two large laboratory populations maintained with effective population size approximately 500, all of them derived from the same isogenic origin. Estimates were based on real-time quantitative PCR and in situ hybridization. Considering previous estimates of roo copy numbers obtained at earlier stages of the experiment, the results imply a strong acceleration of the insertion rate in the accumulation lines. The detected acceleration is consistent with a model where only one (maybe a few) of the approximately 70 roo copies in the ancestral isogenic genome was active and each active copy caused new insertions with a relatively high rate ( approximately 10(-2)), with new inserts being active copies themselves. In the two laboratory populations, however, a stabilized copy number or no accelerated insertion was found. Our estimate of the average deleterious viability effects per accumulated insert [E(s) < 0.003] is too small to account for the latter finding, and we discuss the mechanisms that could contain copy number.  相似文献   

18.
The fork-tongued frogs, members of the amphibian Order Anura, belong to the family Dicroglossidae and are one of the most diverse groups of Anuran frogs; however, their taxonomy and phylogeny remain controversial. In the present study, sixteen dicroglossine mitochondrial genomes representing nine dicroglossine genera and 23 other neobatrachian taxa, were used to reconstruct the phylogenetic relationships of the family Dicroglossidae using different partitioned maximum likelihood and partitioned Bayesian inference methods at both the nucleotide and amino acid levels. The sampled fork-tongued frogs form a strongly supported monophyletic group that is the sister taxon to another well-supported clade that includes representatives of the families Ranidae, Rhacophoridae, and Mantellidae. The monophyly of the subfamily Occidozyginae and Dicroglossinae was revealed with strong supports, and two major clades were supported within Dicroglossinae. The sister-group relationship between the genera Limnonectes and the tribe Paini was supported. In addition, a sister-group relationships between Fejervarya and Euphlyctis + Hoplobatrachus, between Quasipaa and Yerana, and between Feirana and Nanorana are well supported. Estimates of divergence times revealed the divergence of Dicroglossidae during the Late Upper Cretaceous to the Early Eocene, and diversification of the major dicroglossine genera from the Early Eocene to the Middle Miocene.  相似文献   

19.
Long terminal repeat retrotransposons (LTR‐RTs) represent a major fraction of plant genomes, but processes leading to transposition bursts remain elusive. Polyploidy expectedly leads to LTR‐RT proliferation, as the merging of divergent diploids provokes a genome shock activating LTR‐RTs and/or genetic redundancy supports the accumulation of active LTR‐RTs through relaxation of selective constraints. Available evidence supports interspecific hybridization as the main trigger of genome dynamics, but few studies have addressed the consequences of intraspecific polyploidy (i.e. autopolyploidy), where the genome shock is expectedly minimized. The dynamics of LTR‐RTs was thus here evaluated through low coverage 454 sequencing of three closely related diploid progenitors and three independent autotetraploids from the young Biscutella laevigata species complex. Genomes from this early diverging Brassicaceae lineage presented a minimum of 40% repeats and a large diversity of transposable elements. Differential abundances and patterns of sequence divergence among genomes for 37 LTR‐RT families revealed contrasted dynamics during species diversification. Quiescent LTR‐RT families with limited genetic variation among genomes were distinguished from active families (37.8%) having proliferated in specific taxa. Specific families proliferated in autopolyploids only, but most transpositionally active families in polyploids were also differentiated among diploids. Low expression levels of transpositionally active LTR‐RT families in autopolyploids further supported that genome shock and redundancy are non‐mutually exclusive triggers of LTR‐RT proliferation. Although reputed stable, autopolyploid genomes show LTR‐RT fractions presenting analogies with polyploids between widely divergent genomes.  相似文献   

20.
Phylogenetic relationships of members of the salamander family Salamandridae were examined using complete mitochondrial genomes collected from 42 species representing all 20 salamandrid genera and five outgroup taxa. Weighted maximum parsimony, partitioned maximum likelihood, and partitioned Bayesian approaches all produce an identical, well-resolved phylogeny; most branches are strongly supported with greater than 90% bootstrap values and 1.0 Bayesian posterior probabilities. Our results support recent taxonomic changes in finding the traditional genera Mertensiella, Euproctus, and Triturus to be non-monophyletic species assemblages. We successfully resolved the current polytomy at the base of the salamandrid tree: the Italian newt genus Salamandrina is sister to all remaining salamandrids. Beyond Salamandrina, a clade comprising all remaining newts is separated from a clade containing the true salamanders. Among these newts, the branching orders of well-supported clades are: primitive newts (Echinotriton, Pleurodeles, and Tylototriton), New World newts (Notophthalmus-Taricha), Corsica-Sardinia newts (Euproctus), and modern European newts (Calotriton, Lissotriton, Mesotriton, Neurergus, Ommatotriton, and Triturus) plus modern Asian newts (Cynops, Pachytriton, and Paramesotriton).Two alternative sets of calibration points and two Bayesian dating methods (BEAST and MultiDivTime) were used to estimate timescales for salamandrid evolution. The estimation difference by dating methods is slight and we propose two sets of timescales based on different calibration choices. The two timescales suggest that the initial diversification of extant salamandrids took place in Europe about 97 or 69Ma. North American salamandrids were derived from their European ancestors by dispersal through North Atlantic Land Bridges in the Late Cretaceous ( approximately 69Ma) or Middle Eocene ( approximately 43Ma). Ancestors of Asian salamandrids most probably dispersed to the eastern Asia from Europe, after withdrawal of the Turgai Sea ( approximately 29Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号