首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of their abundance, resistance to proteolysis, rapid aggregation and neurotoxicity, N-terminally truncated and, in particular, pyroglutamate (pE)-modified Abeta peptides have been suggested as being important in the initiation of pathological cascades resulting in the development of Alzheimer's disease. We found that the N-terminal pE-formation is catalyzed by glutaminyl cyclase in vivo. Glutaminyl cyclase expression was upregulated in the cortices of individuals with Alzheimer's disease and correlated with the appearance of pE-modified Abeta. Oral application of a glutaminyl cyclase inhibitor resulted in reduced Abeta(3(pE)-42) burden in two different transgenic mouse models of Alzheimer's disease and in a new Drosophila model. Treatment of mice was accompanied by reductions in Abeta(x-40/42), diminished plaque formation and gliosis and improved performance in context memory and spatial learning tests. These observations are consistent with the hypothesis that Abeta(3(pE)-42) acts as a seed for Abeta aggregation by self-aggregation and co-aggregation with Abeta(1-40/42). Therefore, Abeta(3(pE)-40/42) peptides seem to represent Abeta forms with exceptional potency for disturbing neuronal function. The reduction of brain pE-Abeta by inhibition of glutaminyl cyclase offers a new therapeutic option for the treatment of Alzheimer's disease and provides implications for other amyloidoses, such as familial Danish dementia.  相似文献   

2.
Compelling evidence suggests that N-terminally truncated and pyroglutamyl-modified amyloid-beta (Abeta) peptides play a major role in the development of Alzheimer's disease. Posttranslational formation of pyroglutamic acid (pGlu) at position 3 or 11 of Abeta implies cyclization of an N-terminal glutamate residue rendering the modified peptide degradation resistant, more hydrophobic, and prone to aggregation. Previous studies using artificial peptide substrates suggested the potential involvement of the enzyme glutaminyl cyclase in generation of pGlu-Abeta. Here we show that glutaminyl cyclase (QC) catalyzes the formation of Abeta 3(pE)-40/42 after amyloidogenic processing of APP in two different cell lines, applying specific ELISAs and Western blotting based on urea-PAGE. Inhibition of QC by the imidazole derivative PBD150 led to a blockage of Abeta 3(pE)-42 formation. Apparently, the QC-catalyzed formation of N-terminal pGlu is favored in the acidic environment of secretory compartments, which is also supported by double-immunofluorescence labeling of QC and APP revealing partial colocalization. Finally, initial investigations focusing on the molecular pathway leading to the generation of truncated Abeta peptides imply an important role of the amino acid sequence near the beta-secretase cleavage site. Introduction of a single-point mutation, resulting in an amino acid substitution, APP(E599Q), i.e., at position 3 of Abeta, resulted in significant formation of Abeta 3(pE)-40/42. Introduction of the APP KM595/596NL "Swedish" mutation causing overproduction of Abeta, however, surprisingly diminished the concentration of Abeta 3(pE)-40/42. The study provides new cell-based assays for the profiling of small molecule inhibitors of QC and points to conspicuous differences in processing of APP depending on sequence at the beta-secretase cleavage site.  相似文献   

3.
The detailed analysis of beta-amyloid (Abeta) peptides in human plasma is still hampered by the limited sensitivity of available mass spectrometric methods and the lack of appropiate ELISAs to measure Abeta peptides other than Abeta(1-38), Abeta(1-40), and Abeta(1-42). By combining high-yield Abeta immuno- precipitation (IP), IEF, and urea-based Abeta-SDS-PAGE-immunoblot, at least 30 Abeta-immuno-reactive spots were detected in human plasma samples as small as 1.6 mL. This approach clearly resolved Abeta peptides Abeta(1-40), Abeta(1-42), Abeta(1-37), Abeta(1-38), Abeta(1-39), the N-truncated Abeta(2-40), Abeta(2-42), and, for the first time, also Abeta(1-41). Relative quantification indicated that Abeta(1-40) and Abeta(1-42) accounted for less than 60% of the total amount of Abeta peptides in plasma. All other Abeta peptides appear to be either C-terminally or N-terminally truncated forms or as yet uncharacterized Abeta species which migrated as trains of spots with distinct pIs. The Abeta pattern found in cerebrospinal fluid (CSF) was substantially less complex. This sensitive method (2-D Abeta-WIB) might help clarifying the origin of distinct Abeta species from different tissues, cell types, or intracellular pools as well as their amyloidogenicity. It might further help identifying plasma Abeta species suitable as biomarkers for the diagnosis of Alzheimer's disease (AD).  相似文献   

4.
An N-terminal truncated isoform of the amyloid beta-peptide (A beta) that begins with a pyroglutamate (pE) residue at position 3 [A beta3(pE)-42] is the predominant isoform found in senile plaques. Based upon previous in vitro studies regarding A beta N-terminal truncated isoforms, it has been hypothesized that A beta3(pE)-x isoforms may aggregate more rapidly and become more toxic than corresponding Abeta1-x peptides. However, the toxicity and aggregation properties of A beta3(pE)-42 and A beta3(pE)-40 have not previously been examined. After initial solubilization and 1-week preaggregation of each peptide at 37 degrees C and pH 7.4, the toxicity of 5-50 microM A beta3(pE)-42 was similar to that of A beta1-42. Moreover, the toxicity of A beta3(pE)-40 paralleled that induced by A beta1-40 in both 1 day in vitro (DIV) cortical and 7 DIV hippocampal cells. Circular dichroism spectra did not reveal major differences in secondary structure between aged A beta1-42, A beta3(pE)-42, A beta3(pE)-40, and A beta1-40 or freshly solubilized forms of these peptides. Overall, the data indicate that the loss of the two N-terminal amino acids and the cyclization of glutamate at position 3 do not alter the extracellular toxicity of A beta.  相似文献   

5.
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.  相似文献   

6.
Extracellular amyloid beta peptides (Abetas) have long been thought to be a primary cause of Alzheimer's disease (AD). Now, detection of intracellular neuronal Abeta1--42 accumulation before extracellular Abeta deposits questions the relevance of intracellular peptides in AD. In the present study, we directly address whether intracellular Abeta is toxic to human neurons. Microinjections of Abeta1--42 peptide or a cDNA-expressing cytosolic Abeta1--42 rapidly induces cell death of primary human neurons. In contrast, Abeta1--40, Abeta40--1, or Abeta42--1 peptides, and cDNAs expressing cytosolic Abeta1--40 or secreted Abeta1--42 and Abeta1--40, are not toxic. As little as a 1-pM concentration or 1500 molecules/cell of Abeta1--42 peptides is neurotoxic. The nonfibrillized and fibrillized Abeta1--42 peptides are equally toxic. In contrast, Abeta1--42 peptides are not toxic to human primary astrocytes, neuronal, and nonneuronal cell lines. Inhibition of de novo protein synthesis protects against Abeta1--42 toxicity, indicating that programmed cell death is involved. Bcl-2, Bax-neutralizing antibodies, cDNA expression of a p53R273H dominant negative mutant, and caspase inhibitors prevent Abeta1--42-mediated human neuronal cell death. Taken together, our data directly demonstrate that intracellular Abeta1--42 is selectively cytotoxic to human neurons through the p53--Bax cell death pathway.  相似文献   

7.
Early pathogenic events in Alzheimer's disease (AD) involve increased production and/or reduced clearance of beta-amyloid (Abeta), especially the 42 amino acid fragment Abeta1-42. The Abeta1-42 peptide is generated through cleavage of the amyloid precursor protein by beta- and gamma-secretase and is catabolised by a variety of proteolytic enzymes such as insulin-degrading enzyme and neprilysin. Here, we describe a method that employs immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to determine the pattern of C-terminally truncated Abeta peptides in cerebrospinal fluid (CSF). Using antibodies coupled to magnetic beads, we have detected 18 C-terminally and 2 N-terminally truncated Abeta peptides in CSF. By determining the identity and profile of the truncated Abeta peptides, more insight may be gained about differences in the metabolism and structural properties of Abeta in AD. Finally, the Abeta fragment signatures may prove useful as a diagnostic test for AD.  相似文献   

8.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

9.
N-terminally truncated Aβ peptides starting with pyroglutamate (AβpE3) represent a major fraction of all Aβ peptides in the brain of Alzheimer disease (AD) patients. AβpE3 has a higher aggregation propensity and stability and shows increased toxicity compared with full-length Aβ. In the present work, we generated a novel monoclonal antibody (9D5) that selectively recognizes oligomeric assemblies of AβpE3 and studied the potential involvement of oligomeric AβpE3 in vivo using transgenic mouse models as well as human brains from sporadic and familial AD cases. 9D5 showed an unusual staining pattern with almost nondetectable plaques in sporadic AD patients and non-demented controls. Interestingly, in sporadic and familial AD cases prominent intraneuronal and blood vessel staining was observed. Using a novel sandwich ELISA significantly decreased levels of oligomers in plasma samples from patients with AD compared with healthy controls were identified. Moreover, passive immunization of 5XFAD mice with 9D5 significantly reduced overall Aβ plaque load and AβpE3 levels, and normalized behavioral deficits. These data indicate that 9D5 is a therapeutically and diagnostically effective monoclonal antibody targeting low molecular weight AβpE3 oligomers.  相似文献   

10.
Blood-based neurochemical diagnosis of vascular dementia: a pilot study   总被引:3,自引:0,他引:3  
Blood-based tests for the differential diagnosis of Alzheimer's disease (AD) are under intensive investigation and have shown promising results with regard to Abeta40 and Abeta42 peptide species in incipient AD. Moreover, plasma Abeta40 was suggested as an independent cerebrovascular risk factor candidate. These considerations prompted us to analyse a total of 72 plasma samples in vascular dementias (VAD, n = 15), AD with cerebrovascular disease (AD with CVD, n = 7), AD (n = 15), Parkinson's disease and Parkinson's disease dementia (PD/PDD, n = 20) and 15 patients with depression that served as controls (DC) for distinct plasma amyloid-beta (Abeta) peptide patterns. For the analysis of plasma we used immunoprecipitation followed by the quantitative Abeta-SDS-PAGE/immunoblot. For comparison, CSF tau and Abeta1-42 analyses were performed. The major outcome was an increase in Abeta1-40 in plasma of VAD paralleled by a decrease in the ratio of Abeta1-38/Abeta1-40. The ratio Abeta1-38/Abeta1-40 in plasma enabled contrasts of beyond 85% and 80% for discriminating VAD from DC and all other patients, respectively. In CSF, we confirmed the typical CSF biomarker constellation of increased tau and diminished Abeta1-42 levels for AD. The diagnostic accuracy of plasma Abeta1-38/Abeta1-40 for VAD resembled the accuracy of CSF biomarkers for AD. From the presented results, we consider the ratio of plasma Abeta1-38/Abeta1-40 peptides to be a blood-based biomarker candidate for VAD.  相似文献   

11.
Pyroglutamate-modified Aβ (AβpE3-42) peptides are gaining considerable attention as potential key players in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Overexpressing AβpE3-42 induced a severe neuron loss and neurological phenotype in TBA2 mice. In vitro and in vivo experiments have recently proven that the enzyme glutaminyl cyclase (QC) catalyzes the formation of AβpE3-42. The aim of the present work was to analyze the role of QC in an AD mouse model with abundant AβpE3-42 formation. 5XFAD mice were crossed with transgenic mice expressing human QC (hQC) under the control of the Thy1 promoter. 5XFAD/hQC bigenic mice showed significant elevation in TBS, SDS, and formic acid-soluble AβpE3-42 peptides and aggregation in plaques. In 6-month-old 5XFAD/hQC mice, a significant motor and working memory impairment developed compared with 5XFAD. The contribution of endogenous QC was studied by generating 5XFAD/QC-KO mice (mouse QC knock-out). 5XFAD/QC-KO mice showed a significant rescue of the wild-type mice behavioral phenotype, demonstrating the important contribution of endogenous mouse QC and transgenic overexpressed QC. These data clearly demonstrate that QC is crucial for modulating AβpE3-42 levels in vivo and prove on a genetic base the concept that reduction of QC activity is a promising new therapeutic approach for AD.  相似文献   

12.
Strong support for a primary causative role of the Abeta peptides in the development of Alzheimer's disease (AD) neurodegeneration derives from reports that presenilin familial AD (FAD) mutants alter amyloid precursor protein processing, thus increasing production of neurotoxic Abeta 1-42 (Abeta 42). This effect of FAD mutants is also reflected in an increased ratio of peptides Abeta 42 over Abeta 1-40 (Abeta 40). In the present study, we show that several presenilin 1 FAD mutants failed to increase production of Abeta 42 or the Abeta 42/40 ratio. Our data suggest that the mechanism by which FAD mutations promote neurodegeneration and AD may be independent of their effects on Abeta production.  相似文献   

13.
Central to the pathology of Alzheimer's disease (AD) is the profuse accumulation of amyloid-beta (Abeta) peptides in the brain of affected individuals, and several amyloid precursor protein (APP) transgenic (Tg) mice models have been created to mimic Abeta deposition. Among these, the PDAPP Tg mice carrying the familial AD APP 717 Val --> Phe mutation have been widely used to test potential AD therapeutic interventions including active and passive anti-Abeta immunizations. The structure and biochemistry of the PDAPP Tg mice Abeta-related peptides were investigated using acid and detergent lysis of brain tissue, ultracentrifugation, FPLC, HPLC, enzymatic and chemical cleavage of peptides, Western blot, immunoprecipitation, and MALDI-TOF and SELDI-TOF mass spectrometry. Our experiments reveal that PDAPP mice produce a variety of C-terminally elongated Abeta peptides in addition to Abeta n-40 and Abeta n-42, as well as N-terminally truncated peptides, suggesting anomalous proteolysis of both APP and Abeta. Important alterations in the overall APP degradation also occur in this model, resulting in a striking comparative lack of CT83 and CT99 fragments, which may be inherent to the strain of mice, a generalized gamma-secretase failure, or the ultimate manifestation of the overwhelming amount of expressed human transgene; these alterations are not observed in other strains of APP Tg mice or in sporadic AD. Understanding at the molecular level the nature of these important animal models will permit a better understanding of therapeutic interventions directed to prevent, delay, or reverse the ravages of sporadic AD.  相似文献   

14.
Insoluble pools of the amyloid-beta peptide (Abeta) in brains of Alzheimer's disease patients exhibit considerable N- and C-terminal heterogeneity. Mounting evidence suggests that both C-terminal extensions and N-terminal truncations help precipitate amyloid plaque formation. Although mechanisms underlying the increased generation of C-terminally extended peptides have been extensively studied, relatively little is known about the cellular mechanisms underlying production of N-terminally truncated Abeta. Thus, we used human NT2N neurons to investigate the production of Abeta11-40/42 from amyloid-beta precursor protein (APP) by beta-site APP-cleaving enzyme (BACE). When comparing undifferentiated human embryonal carcinoma NT2- cells and differentiated NT2N neurons, the secretion of sAPP and Abeta correlated with BACE expression. To study the effects of BACE expression on endogenous APP metabolism in human cells, we overexpressed BACE in undifferentiated NT2- cells and NT2N neurons. Whereas NT2N neurons produced both full-length and truncated Abeta as a result of normal processing of endogenous APP, BACE overexpression increased the secretion of Abeta1-40/42 and Abeta11-40/42 in both NT2- cells and NT2N neurons. Furthermore, BACE overexpression resulted in increased intracellular Abeta1-40/42 and Abeta11-40/42. Therefore, we conclude that Abeta11-40/42 is generated prior to deposition in senile plaques and that N-terminally truncated Abeta peptides may contribute to the downstream effects of amyloid accumulation in Alzheimer's disease.  相似文献   

15.
Alzheimer's disease (AD) is characterized by cholinergic dysfunction and progressive basal forebrain cell loss which has been assumed to be as a result of the extensive accumulation of beta-amyloid (Abeta). In addition to Abeta fibrillar assemblies, there are pre-fibrillar forms that have been shown to be neurotoxic, although their role in cholinergic degeneration is still not known. Using the cholinergic cell line SN56.B5.G4, we investigated the effect of different Abeta(1-42) aggregates on cell viability. In our model, only soluble oligomeric but not fibrillar Abeta(1-42) forms induced toxicity in cholinergic cells. To determine whether the neurotoxicity of oligomeric Abeta(1-42) was caused by its oxidative potential, we performed microarray analysis of SN56.B5.G4 cells treated either with oligomeric Abeta(1-42) or H(2)O(2). We showed that genes affected by Abeta(1-42) differed from those affected by non-specific oxidative stress. Many of the genes affected by Abeta(1-42) were present in the endoplasmic reticulum (ER), Golgi apparatus and/or otherwise involved in protein modification and degradation (chaperones, ATF6), indicating a possible role for ER-mediated stress in Abeta-mediated toxicity. Moreover, a number of genes, which are known to be involved in AD (clusterin, Slc18a3), were identified. This study provides important leads for the understanding of oligomeric Abeta(1-42) toxicity in cholinergic cells, which may account in part for cholinergic degeneration in AD.  相似文献   

16.
Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease   总被引:1,自引:0,他引:1  
Pyroglutamate-modified amyloid-β (Aβ(pE3)) peptides are gaining considerable attention as potential key participants in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Transgenic mice that produce high levels of Aβ(pE3-42) show severe neuron loss. Recent in vitro and in vivo experiments have proven that the enzyme glutaminyl cyclase catalyzes the formation of Aβ(pE3). In this minireview, we summarize the current knowledge on Aβ(pE3), discussing its discovery, biochemical properties, molecular events determining formation, prevalence in the brains of AD patients, Alzheimer mouse models, and potential as a target for therapy and as a diagnostic marker.  相似文献   

17.
Oligomerization of amyloid beta (Abeta) peptides is the decisive event in the development of Alzheimer's disease (AD), the most common neurogenerative disorder in developed countries. Recent evidence links this conformation-driven process to primary- and secondary-structure modifications of Abeta. The N and C terminus of deposited Abeta has been shown to possess conspicuous heterogeneity. While the C-terminally longer form of Abeta, i.e., Abeta (42), is considered more amyloidogenic, the role of the N-terminal modifications, e.g., truncation and glutamate cyclization accounting for the majority of the deposited peptides, is less understood. In the present study, we characterized the oligomerization and seeding capacity of pGlu-amyloid peptides using two unrelated techniques based on flow cytometry or flourescence dye binding. Under different conditions and irrespective of the C terminus of Abeta, i.e., Abeta40 or 42, pGlu-modified peptides displayed an up to 250-fold accelerated initial formation of aggregates compared to unmodified Abeta. The accelerated seed formation is accompanied by a change in the oligomerization kinetics because of N-terminal pGlu formation. Furthermore, the formation of mixed aggregates consisting of either pGlu-Abeta (3-42) or ADan or ABri and Abeta (1-42) was investigated by Abeta fluorescence labeling in flow cytometry. The results suggest that pGlu-modified peptides are potential seeding species of aggregate formation in vivo. The data presented here and the abundance of pGlu peptides in amyloidoses, such as FBD and AD, suggest pGlu-amyloid peptides as a species with biophysical characteristics that might be in particular crucial for the initiation of the disease.  相似文献   

18.
The beta-amyloid peptides (Abeta), Abeta(1-40) and Abeta(1-42), have been implicated in Alzheimer's disease (AD) pathology. Although Abeta(1-42) is generally considered to be the pathological peptide in AD, both Abeta(1-40) and Abeta(1-42) have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Abeta peptides, when interact with the neuronal cation channel, alpha7 nicotinic acetylcholine receptors (alpha7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Abeta(1-42) effectively attenuated these alpha7nAChR-dependent physiology to an extent that was apparently irreversible, Abeta(1-40) showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with alpha7nAChR antagonists. Our data suggest a clear pharmacological distinction between Abeta(1-40) and Abeta(1-42).  相似文献   

19.
The many faces of amyloid beta in Alzheimer's disease   总被引:1,自引:0,他引:1  
The 'amyloid cascade hypothesis' links amyloid beta peptide (Abeta) with the pathological process of Alzheimer's disease (AD) and it still awaits universal acceptance. Amyloid precursor protein (APP), through the actions of the gamma-secretase complex, eventually becomes a different Abetaspecies. The various Abeta species have proven to be difficult to investigate under physiological conditions, and the species of Abeta responsible for neurotoxicity has yet to be unequivocally identified. The two important Abeta peptides involved are Abeta(1-40) and Abeta(1-42), and each has been ascribed both toxic and beneficial attributes. The ratio between the two species can be important in AD etiology. Additionally, shorter variants of Abeta peptides such as Abeta(1-8), Abeta(9-16) and Abeta(16) have also been shown to be potential participants in AD pathology. Interestingly, a new 56-kDa Abeta peptide (Abeta*56) disrupts memory when injected into the brains of young rats. Transgenic mice models are complicated by the interplay between various human Abeta types and the mouse Abeta types in the mouse brains. However, the accumulation of Abeta(1-42) in the brains of transgenic C. elegans worms and Drosophila is indeed detrimental. A less investigated aspect of AD is epigenetics, but in time the investigation of the role of epigenetics in AD may add to our understanding of the development of AD.  相似文献   

20.
The concentration of beta-amyloid peptide (Abeta), x-42 or x-40 amino acids long, increases in brain with the progression Alzheimer's disease (AD). These peptides are deposited extracellularly as highly insoluble fibrils that form densities of amyloid plaques. Abeta fibrillization is a complex polymerization process preceded by the formation of oligomeric and prefibrillar Abeta intermediates. In some of our in vitro studies, in which the kinetics of intermediate steps of fibril formation were examined, we used concentrations of synthetic Abeta that exceed what is normally employed in fibrillization studies, 300-600 microM. At these concentrations, in a cell free system and under physiological conditions, Abeta 1-40 peptide (Abeta40) forms fibrils that spontaneously assemble into clearly defined spheres, "betaamy balls", with diameters of approximately 20-200 microm. These supramolecular structures show weak birefringence with Congo red staining and high stability with prolonged incubation times (at least 2 weeks) at 30 degrees C, freezing, and dilution in H(2)O. At 600 microM, they are detected after incubation for approximately 20 h. Abeta peptide 1-42 (Abeta42) lacks the ability to form betaamy balls but accelerates Abeta40 betaamy ball formation at low stoichiometric levels (1:20 Abeta42:Abeta40 ratio). Abeta42 levels above this (=10-50% w/w) impede Abeta40 betaamy ball formation. Using light (LM) and electron microscopy (EM), this study examines the gross morphology and ultrastructure of Abeta40 betaamy balls and their time course of formation, in the absence and presence of Abeta42, along with some stability measures. As spheres of a misfolded protein, betaamy balls resemble both AD Abeta senile plaques and neuronal inclusion bodies associated with other neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号