首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lyamouri M  Enerly E  Kress H  Lambertsson A 《Gene》2002,282(1-2):199-206
In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.  相似文献   

2.
Evolution of the glucose dehydrogenase gene in Drosophila   总被引:5,自引:0,他引:5  
The glucose dehydrogenase genes (Gld) of Drosophila melanogaster, of D. pseudoobscura, and of D. virilis have been isolated and compared with each other in order to identify conserved and divergent aspects of their structure and expression. The exon/intron structure of Gld is conserved. The Gld mRNAs are similar, with a range of 2.6-2.8 kb among the three species. All three species exhibit peaks of Gld expression during every major developmental stage, although considerable variation in the precise timing of these peaks exists between species. Interspecific gene transfer experiments demonstrate that the regulation and function of the D. pseudoobscura Gld is similar enough to the homologous gene in D. melanogaster to substitute for its essential role in the eclosion process. Comparison of the putative promoter sequences has identified both shared and divergent sequence elements which are likely responsible, respectively, for the conserved and divergent patterns of expression observed. The entire coding sequences of the pseudoobscura and melanogaster Gld genes are presented and shown to encode a 612-amino-acid pre-protein. The inferred amino acid sequences are 92% conserved between the two species. In general the intronic regions of Gld are unusually well conserved.  相似文献   

3.
Keplinger BL  Guo X  Quine J  Feng Y  Cavener DR 《Genetics》2001,157(2):699-716
The Drosophila melanogaster Gld gene has multiple and diverse developmental and physiological functions. We report herein that interactions among proximal promoter elements and a cluster of intronically located enhancers and silencers specify the complex regulation of Gld that underlies its diverse functions. Gld expression in nonreproductive tissues is largely determined by proximal promoter elements with the exception of the embryonic labium where Gld is activated by an enhancer within the first intron. A nuclear protein, GPAL, has been identified that binds the Gpal elements in the proximal promoter region. Regulation of Gld in the reproductive organs is particularly complex, involving interactions among the Gpal proximal promoter elements, a unique TATA box, three distinct enhancer types, and one or more silencer elements. The three somatic reproductive organ enhancers each activate expression in male and female pairs of reproductive organs. One of these pairs, the male ejaculatory duct and female oviduct, are known to be developmentally homologous. We report evidence that the other two pairs of organs are developmentally homologous as well. A comprehensive model to explain the full developmental regulation of Gld and its evolution is presented.  相似文献   

4.
5.
6.
I Marin  M Labrador  A Fontdevila 《Génome》1992,35(6):967-974
The frequency and types of repetitive nonsatellite DNA of two sibling species of the repleta group of Drosophila, D. buzzatii, and D. koepferae have been determined. For each species, the analysis is based on a sample of more than 100 clones (400 kb) obtained from genomic DNA. A theoretical model has been developed to correct for the presence of a mixture of repetitive and unique DNA in these clones. After correction, a high content of repetitive DNA has been demonstrated for both species (D. buzzatii, 19-26%; D. koepferae, 27-32%). The repetitive sequences have been classified according to their hybridization pattern when used as probes against genomic DNA and by their in situ hybridization signals on polytene chromosomes. Data suggest that the main nonsatellite component of these species is simpler and more repetitive than that of D. melanogaster, pointing to a wide variability in content and class size distribution of repetitive DNA among Drosophila species.  相似文献   

7.
We have used low stringency screening with the Drosophila melanogaster s36 chorion gene to recover its homologue from genomic and cDNA libraries of the medfly, Ceratitis capitata. The same gene has also been recovered from a genomic library of D. virilis. The medfly s36 gene shows similar developmental specificity as in Drosophila (early choriogenesis). It is also specifically amplified in ovarian follicles; this is the first report of chorion gene amplification outside the genus Drosophila. Alignments of s36 sequences from three species show that, in addition to its regulatory conservation, the s36 gene is extensively conserved in sequence, in a region corresponding to a central protein domain, and in short regions of 5' flanking DNA that might correspond to cis-regulatory elements.  相似文献   

8.
9.
We have isolated a cloned segment of Drosophila genomic DNA containing a ribosomal protein gene. Hybridization analysis of the DNA in this clone indicates a complex organization of repeated elements within this cloned segment. At least one of these repeated elements is homologous to regions of rDNA. Restriction analysis of the clone shows that some of the repeated elements are present as tandem duplications and in scattered locations within the cloned DNA segment. There are also three non-ribosomal protein genes contained in this clone, each of which is expressed along with the ribosomal protein gene into RNA species present in Drosophila embryos.  相似文献   

10.
The sex-determination genes of Drosophila act to repress the developmental pathway for the internal somatic reproductive organs of the opposite sex. By misregulating this pathway during preadult development, the organ-specific expression pattern of the glucose dehydrogenase gene (Gld) in the reproductive tract of adult flies has been changed without a concomitant sexual transformation of the reproductive organs. Misregulation of the tra, tra-2, and dsx genes leads to very similar patterns of ectopic expression of Gld. The induced ectopic patterns of Gld expression at the adult stage occur in a small subset of organs which all normally express the Gld gene during their morphogenesis. These ectopic patterns are irrevocably set during late larval-early pupal development. The normal pattern of Gld expression in several other Drosophila species is quite similar to the ectopic patterns which we have generated in D. melanogaster, suggesting that the interspecific variation in Gld expression may result from variation in the expression of the sex-determination genes.  相似文献   

11.
The population biology of transposable elements   总被引:3,自引:0,他引:3  
A transposable element can be defined as a DNA sequence capable of moving to new sites in the genome. Such DNA sequences have been described in a wide range of organisms. The evolutionary processes affecting transposable elements can thus be divided into two categories: changes in sequence and changes in genomic location. As with other types of evolutionary change, the nature of the evolutionary process will be reflected in the extent and type of genetic variation existing in wild populations. Quantitative models of the evolution of transposable element sequences and positions will be outlined, and related to relevant data. The extent to which models designed to describe obvious transposable elements such as the mobile sequences of Drosophila are also applicable to interspersed repetitive DNAs from other species will be discussed.  相似文献   

12.
13.
During the preadult development of Drosophila melanogaster, the GLD (glucose dehydrogenase) gene (Gld) is expressed in a variety of tissues, including the immature reproductive tract. At the adult stage the expression of Gld becomes largely restricted to the reproductive tract of males and females. We examined the expression of GLD in the adult reproductive tract of 50 species in the genus Drosophila, as well as in those of a few representative species from four other closely related genera. GLD exhibits considerable organ-specific diversity in the reproductive tract of males and females. Among these species, five male GLD phenotypes and six female GLD phenotypes were found. In contrast, the preadult expression of GLD in representative species from each distinct adult pattern type was determined and found to be highly conserved in both the immature reproductive tract and non-reproductive organs. Moreover, the set of reproductive organs that express GLD during preadult development is equivalent to the sum of the five male and six female adult GLD phenotypes. To initially define the contribution of cis- versus trans-acting factors responsible for differences in adult GLD expression between two of these species--D. melanogaster and D. pseudoobscura--we transferred the D. pseudoobscura Gld to the genome of D. melanogaster and investigated its expression. GLD expression patterns of these transformants displayed characteristics that are unique to both species, suggesting the presence of both cis- and trans-acting differences between these two species.  相似文献   

14.
Distribution and conservation of mobile elements in the genus Drosophila   总被引:13,自引:1,他引:12  
Essentially nothing is known of the origin, mode of transmission, and evolution of mobile elements within the genus Drosophila. To better understand the evolutionary history of these mobile elements, we examined the distribution and conservation of homologues to the P, I, gypsy, copia, and F elements in 34 Drosophila species from three subgenera. Probes specific for each element were prepared from D. melanogaster and hybridized to genomic DNA. Filters were washed under conditions of increasing stringency to estimate the similarity between D. melanogaster sequences and their homologues in other species. The I element homologues show the most limited distribution of all elements tested, being restricted to the melanogaster species group. The P elements are found in many members of the subgenus Sophophora but, with the notable exception of D. nasuta, are not found in the other two subgenera. Copia-, gypsy-, and F-element homologues are widespread in the genus, but their similarity to the D. melanogaster probe differs markedly between species. The distribution of copia and P elements and the conservation of the gypsy and P elements is inconsistent with a model that postulates a single ancient origin for each type of element followed by mating-dependent transmission. The data can be explained by horizontal transmission of mobile elements between reproductively isolated species.   相似文献   

15.
Bonen L  Boer PH  Gray MW 《The EMBO journal》1984,3(11):2531-2536
We have determined the sequence of the wheat mitochondrial gene for cytochrome oxidase subunit II (COII) and find that its derived protein sequence differs from that of maize at only three amino acid positions. Unexpectedly, all three replacements are non-conservative ones. The wheat COII gene has a highly-conserved intron at the same position as in maize, but the wheat intron is 1.5 times longer because of an insert relative to its maize counterpart. Hybridization analysis of mitochondrial DNA from rye, pea, broad bean and cucumber indicates strong sequence conservation of COII coding sequences among all these higher plants. However, only rye and maize mitochondrial DNA show homology with wheat COII intron sequences and rye alone with intron-insert sequences. We find that a sequence identical to the region of the 5' exon corresponding to the transmembrane domain of the COII protein is present at a second genomic location in wheat mitochondria. These variations in COII gene structure and size, as well as the presence of repeated COII sequences, illustrate at the DNA sequence level, factors which contribute to higher plant mitochondrial DNA diversity and complexity.  相似文献   

16.
The conservation of Homeotic (Hox) gene clustering and colinearity in many metazoans indicates that functional constraints operate on this genome organization. However, several studies have questioned its relevance in Drosophila. Here, we analyse the genomic organization of Hox and Hox-derived genes in 13 fruitfly species and the mosquito Anopheles gambiae. We found that at least seven different Homeotic complex (HOM-C) arrangements exist among Drosophila species, produced by three major splits, five microinversions and six gene transpositions. This dynamism contrasts with the stable organization of the complex in many other taxa. Although there is no evidence of an absolute requirement for Hox gene clustering in Drosophila, we found that strong functional constraints act on the individual genes.  相似文献   

17.
18.
In Drosophila melanogaster there are two genes which encode the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Gapdh-43E and Gapdh-13F. We have shown that Gapdh-43E codes for the GAPDH subunit with an apparently larger molecular weight while Gapdh-13F encodes the GAPDH subunit having an apparently smaller molecular weight. Immunoblots of sodium dodecyl sulfate gels were used to survey species from throughout the genus and results indicated that two classes of GAPDH subunits are present only in Drosophila species of the melanogaster and takahashi subgroups of the melanogaster group. Only the smaller subunit is found in species of the obscura group while all other species have only a large subunit. Drosophila hydei was analyzed at the DNA level as a representative species of the subgenus Drosophila. The genome of this species has a single Gapdh gene which is localized at a cytogenetic position likely to be homologous to Gapdh-43 E of D. melanogaster. Comparison of its sequence with the sequence of the D. melanogaster Gapdh genes indicates that the two genes of D. melanogaster are more similar to one another than either is to the gene from D. hydei. The Gapdh gene from D. hydei contains an intron following codon 29. Neither Gapdh gene of D. melanogaster has an intron within the coding region. Southern blots of genomic DNA were used to determine which species have duplicate Gapdh genomic sequences. Gene amplification was used to determine which species have a Gapdh gene that is interrupted by an intron. Species of the subgenus Drosophila have a single Gapdh gene with an intron. Species of the willistoni and saltans groups have a single Gapdh gene that does not contain an intron.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
P transposable elements of Drosophila melanogaster cloned from the strong P strain pi 2 have been analysed. The structures and chromosomal locations of 26 of the 30-50 elements estimated to be present in pi 2 have been determined. At one location two elements are inserted 100 base pairs (bp) apart, and in a second location two elements are only separated by the 8 bp duplicated upon P-element insertion. In addition to 2.9 kilobase-pair (kbp) elements, elements with 14 different internal deletions from 1.3 to 2.3 kbp in size have been isolated. There are 7 copies of the 2.9 kbp element, 2 copies each of 5 internally deleted elements and a single copy of 9 internally deleted elements. One of the elements found twice is the KP element, which may play a role in the regulation of hybrid dysgenesis in strains which contain many copies of this element. Apart from internal deletions the elements are extremely homogeneous in DNA sequence, with only 2 single base polymorphisms detected twice each in over 16 kbp of P-element sequence. Although transpositions are infrequent in an inbred P cytotype strain such as pi 2, the distribution of these cloned elements indicates that when the genomic library was made, the strain was polymorphic with respect to element location. The distribution and structures of the element are discussed with respect to models for regulation of P-element transposition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号