首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文对电刺激家兔腹部的迷走神经外周端所引起的降压反应进行了研究。在121只家兔中的实验结果表明:电刺激腹部迷走神经外周端可引起动脉压、小肠和后肢的灌流压同时降低,而心率则无明显变化。这一降压反应发生时,小肠静脉血中的组织胺含量较刺激前明显升高,然后恢复;将小剂量的组织胺 H_1受体阻断剂扑尔敏、非乃根和 H_2受体阻断剂甲氰咪胍(Cimetidine)分别注入肠系膜上动脉均能减弱刺激腹部迷走神经外周端引起的动脉压和小肠灌流压的降低。心得安能削弱此降压反应,而阿托品无效;切断两侧内脏大神经能显著削弱刺激腹部迷走神经外周端引起的降压反应。此残余的降压反应在注入抗组织胺剂后完全消失。由此推论,刺激家兔腹部迷走神经外周端引起的降压反应是通过中枢和外周两方面因素的作用,使血管舒张,外周阻力降低而实现的。  相似文献   

2.
In acute experiments on anesthetized dogs under open chest conditions, we studied characteristics of the efferent sympathetic influences on the heart and vessels related to realization of cardiogenic depressor vagus-mediated reflexes. Catheterization of the heart cavities and parallel recording of the mass efferent spike activities in the cardiac and vertebral sympathetic nerves and of the pressure in the aortic ventricle of the heart were used. We found that reflex shifts in the spike activity in the cardiac and vertebral nerves elicited by pharmacological stimulation of the left heart (intracoronary injections of veratrine or adrenaline) and by its nidal immune impairment resulting from injection of a cytotoxic serum demonstrate similar direction (a drop in the frequency of the efferent sympathetic activity). Yet, the dynamics of such inhibitory responses to the influence of the same stimulus and their intensity in one nerve or another and those in one and the same nerve under the influence of different stimuli are considerably dissimilar. Thus, realization of vagus-mediated cardiogenic reflexes is characterized by clear heterogeneity of the efferent sympathetic control of different regions of the cardiovascular system. Such a specificity can provide differential regulation of the heart function and functions of the vascular bed related to different cardiogenic influences (both in the norm and under conditions of formation of an injury nidus in the heart).  相似文献   

3.
Studies of genetically modified mice provide a powerful approach to investigate consequences of altered gene expression in physiological and pathological states. The goal of the present study was to characterize afferent, central, and efferent components of the baroreceptor reflex in anesthetized Webster 4 mice. Baroreflex and baroreceptor afferent functions were characterized by measuring changes in renal sympathetic nerve activity (RSNA) and aortic depressor nerve activity (ADNA) in response to nitroprusside- and phenylephrine-induced changes in arterial pressure. The data were fit to a sigmoidal logistic function curve. Baroreflex diastolic pressure threshold (P(th)), the pressure at 50% inhibition of RSNA (P(mid)), and baroreflex gain (maximum slope) averaged 74 +/- 5 mmHg, 101 +/- 3 mmHg, and 2.30 +/- 0.54%/mmHg, respectively (n = 6). The P(th), P(mid), and gain for the diastolic pressure-ADNA relation (baroreceptor afferents) were similar to that observed for the overall reflex averaging 79 +/- 9 mmHg, 101 +/- 4 mmHg, and 2.92 +/- 0.53%/mmHg, respectively (n = 5). The central nervous system mediation of the baroreflex and the chronotropic responsiveness of the heart to vagal efferent activity were independently assessed by recording responses to electrical stimulation of the left ADN and the peripheral end of the right vagus nerve, respectively. Both ADN and vagal efferent stimulation induced frequency-dependent decreases in heart rate and arterial pressure. The heart rate response to ADN stimulation was nearly abolished in mice anesthetized with pentobarbital sodium (n = 4) compared with mice anesthetized with ketamine-acepromazine (n = 4), whereas the response to vagal efferent stimulation was equivalent under both types of anesthesia. Application of these techniques to studies of genetically manipulated mice can be used to identify molecular mechanisms of baroreflex function and to localize altered function to afferent, central, or efferent sites.  相似文献   

4.
The effect of bilateral carotid occlusion (BCO) on the activity of the vertebral and cardiac sympathetic efferent nerves was studied in gallamine-immobilized and artificially ventilated cats under chloralose-urethane anaesthesia. Electrical activity of the vertebral and cardiac nerves (VNA and CNA), their integram, arterial blood pressure and respiration were recorded. BCO led to an increase in VNA persisting throughout the occlusion period, while merely a transient increase took place in CNA. When blood pressure was kept at a constant level or the depressor nerves was transected, CNA responded to BCO with a lasting increase. Electrical stimulation of the central stump of the left depressor nerve inhibited CNA much more than VNA. It is assumed that the selective inhibition of CNA, after a transient increase, arises as a consequence of a rise in blood pressure, i.e. of consecutive aortic baroreceptor excitation.  相似文献   

5.
In acute experiments on anesthetized cats, afferent spike activity from the parasympathetic (vagal) and sympathetic cardiac nerves, ECG, and cardiodynamic indices were recorded. The effects of indomethacin-induced blockade of cyclo-oxygenase pathway in metabolism of arachidonic acid on the development of cardiogenic reflex responses after intracoronary injections of veratrine, bradykinin, or prostacyclin were tested. It was found that after indomethacin injection depressor cardiogenic vagal reflexes, evoked by veratrine or bradykinin administrations, became significantly suppressed or practically disappeared. This was accompanied by a drop in the frequency of afferent vagal activity in the cardiac nerves. This effect could be observed throughout the entire period of influence of indomethacin (about 2 h after its injection). Veratrine or bradykinin, being injected simultaneously with prostacyclin, provided faster partial recovery of depressor responses (at 1 h) and promoted some activation of vagal cardiac nerves, despite the effect of indomethacin. Injection of indomethacin did not change the pattern of sympathetic afferent activity. It is suggested that the main derivative of cyclo-oxygenase pathway of arachidonic acid metabolism, prostacyclin, is able to modulate vagal nervous activity at the level of afferent structures in the heart. Prostacyclin may appear a humoral component of cardiogenic depressor reflexes of a vagal nature.Neirofiziologiya/Neurophysiology, Vol. 28, No. 1, pp. 53–61, January–February, 1996.  相似文献   

6.
We investigated the effects of diabetes mellitus and antioxidant treatment on the sensory and reflex function of cardiac chemosensory nerves in rats. Diabetes was induced by streptozotocin (STZ; 85 mg/kg ip). Subgroups of sham- and STZ-treated rats were chronically treated with an antioxidant, vitamin E (60 mg/kg per os daily, started 2 days before STZ). Animals were studied 6-8 wk after STZ injection. We measured renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MABP), and cardiac vagal and sympathetic afferent activities in response to stimulation of chemosensitive sensory nerves in the heart by epicardial application of capsaicin (Caps) and bradykinin (BK). In cardiac sympathetic-denervated rats, Caps and BK (1-10.0 microg) evoked a vagal afferent mediated reflex depression of RSNA and MABP, which was significantly blunted in STZ-treated rats (P < 0.05). In vagal-denervated rats, Caps and BK (1-10.0 microg) evoked a sympathetic afferent-mediated reflex elevation of RSNA and MABP, which also was significantly blunted in STZ-treated rats (P < 0.05). Chronic vitamin E treatment effectively prevented these cardiac chemoreflex defects in STZ-treated rats without altering resting blood glucose or hemodynamics. STZ-treated rats with insulin replacement did not exhibit impaired cardiac chemoreflexes. In afferent studies, Caps and BK (0.1 g-10.0 microg) increased cardiac vagal and sympathetic afferent nerve activity in a dose-dependent manner in sham-treated rats. These responses were significantly blunted in STZ-treated rats. Vitamin E prevented the impairment of afferent discharge to chemical stimulation in STZ rats. The following were concluded: STZ-induced, insulin-dependent diabetes in rats extensively impairs the sensory and reflex properties of cardiac chemosensitive nerve endings, and these disturbances can be prevented by chronic treatment with vitamin E. These results suggest that oxidative stress plays an important role in the neuropathy of this autonomic reflex in diabetes.  相似文献   

7.
Baroreflex control of heart rate (HR) is impaired after chronic intermittent hypoxia (CIH). However, the location and nature of this response remain unclear. We examined baroreceptor afferent, vagal efferent, and central components of the baroreflex circuitry. Fischer 344 (F344) rats were exposed to room air (RA) or CIH for 35-50 days and were then anesthetized with isoflurane, ventilated, and catheterized for measurement of mean arterial blood pressure (MAP) and HR. Baroreceptor function was characterized by measuring percent changes of integrated aortic depressor nerve (ADN) activity (Int ADNA) relative to the baseline value in response to sodium nitroprusside- and phenylephrine-induced changes in MAP. Data were fitted to a sigmoid logistic function curve. HR responses to electrical stimulation of the left ADN and the right vagus nerve were assessed under ketamine-acepromazine anesthesia. Compared with RA controls, CIH significantly increased maximum baroreceptor gain or maximum slope, maximum Int ADNA, and Int ADNA range (maximum - minimum Int ADNA), whereas other parameters of the logistic function were unchanged. In addition, CIH increased the maximum amplitude of bradycardic response to vagal efferent stimulation and decreased the time from stimulus onset to peak response. In contrast, CIH significantly reduced the maximum amplitude of bradycardic response to left ADN stimulation and increased the time from stimulus onset to peak response. Therefore, CIH decreased central mediation of the baroreflex but augmented baroreceptor afferent function and vagal efferent control of HR.  相似文献   

8.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

9.
Afferent and efferent spike activity from the parasympathetic (vagus) and sympathetic cardiac nerves were recorded simultaneously with ECG, and indices of heart function were measured in acute experiments on anesthetized dogs, which allowed us to study the modifications of cardio-cardiac reflex influences after a local immune heart injury. After an injury nidus has been formed in the heart, cardiogenic depressor reflexes evoked by an intracoronary application of veratrine or bradykinin were considerably suppressed or even abolished, and afferent spike activity in the vagus cardiac nerves noticeably decreased. At the same time, both the facilitation of activity in sympathetic afferent fibers and pressor reflex effects were preserved after the heart injury. Different localization of vagus and sympathetic afferent structures in the heart and their specialized sensitivity to the biologically active substances are suggested as the factors determining the pattern of cardiogenic reflex influences after a heart injury.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 18–25, January–February, 1995.  相似文献   

10.
Stimulation of cardiopulmonary receptors with phenylbiguanide (PBG) elicits depressor cardiovascular reflex responses, including decreases in blood pressure and heart rate mediated in part by the brain stem parasympathetic cardiac neurons in the nucleus ambiguus (NAmb). The present study examined NAmb neurotransmitter mechanisms underlying the influence of electroacupuncture (EA) on the PBG-induced hypotension and bradycardia. We hypothesized that somatic stimulation during EA modulates PBG responses through opioid and γ-aminobutyric acid (GABA) modulation in the NAmb. Anesthetized and ventilated cats were studied during repeated stimulation with PBG or cardiac vagal afferents while low-frequency EA (2 Hz) was applied at P5-6 acupoints overlying the median nerve for 30 min and NAmb neuronal activity, heart rate, and blood pressure were recorded. Microinjection of kainic acid into the NAmb attenuated the PBG-induced bradycardia from -60 ± 11 to -36 ± 11 beats/min. Likewise, EA reduced the PBG-induced depressor and bradycardia reflex by 52 and 61%, respectively. Cardiac vagal afferent evoked preganglionic cellular activity in the NAmb was reduced by EA for about 60 min. Blockade of opioid or GABA(A) receptors using naloxone and gabazine reversed the EA-related modulation of the evoked cardiac vagal activity by 73 and 53%, respectively. Similarly, naloxone and gabazine reversed EA modulation of the negative chronotropic responses from -11 ± 5 to -23 ± 6 and -13 ± 4 to -24 ± 3 beats/min, respectively. Thus EA at P5-6 decreases PBG evoked hypotension and bradycardia as well as the NAmb PBG-sensitive preganglionic cardiac vagal outflow through opioid and GABA neurotransmitter systems.  相似文献   

11.
生理情况下,心脏和肾脏在血流动力学和神经激素等调节中相互作用,对于循环系统的稳态维持起重要作用。但在充血性心力衰竭的病理情况下,心脏和肾脏之间存在明显的调节紊乱。首先,急性失代偿性心力衰竭的患者住院治疗的研究结果证明其有一定程度的肾脏失调。其次,慢性充血性心力衰竭时肾脏交感神经系统也起到重要作用:肾脏交感纤维活性增强可导致肾素的释放、钠水潴留、肾血流的降低、血管阻力增加、左心室重塑、左心功能失调等。众所周知,肾脏交感神经切除术可以减低血压和改善心脏功能,但是由于有创的手术方式限制了其应用。过去两年间,随着新的导管消融肾脏去神经化技术的日益完善,其有望成为治疗高血压病和心力衰竭的手段。在此,本文综述了心力衰竭时肾脏交感传入神经和传出神经的发病机理,对目前进行的经导管肾脏去神经化治疗慢性心力衰竭的基础及临床试验进行安全性及有效性评价。提示我们经导管肾脏去神经化有望成为心力衰竭治疗的新靶点。  相似文献   

12.
Atrial natriuretic peptide (ANP) can excite cardiac nerve endings and invoke a decrease in arterial blood pressure and a reduction in renal sympathetic nerve activity. Our laboratory has previously demonstrated that this renal depressor reflex was invoked by systemic injection of ANP and not by the direct application of ANP to the epicardium, a major locus for vagal afferents. We now examine whether inhibition of prostaglandin synthesis impairs reflex responses that are normally associated with ANP injections. Renal sympathetic nerve activity, arterial blood pressure, and heart rate were recorded in anesthetized rats. Indomethacin was used to inhibit prostaglandin synthesis through the cyclooxygenase pathway. The ANP-mediated decrease in arterial blood pressure and renal sympathetic nerve activity, observed when prostaglandin synthesis was inhibited, did not differ significantly from the decreases observed in these parameters when prostaglandin synthesis was not inhibited. Heart rate remained unchanged. Our results suggest that the sympatho-inhibitory effects of ANP do not require prostaglandins as intermediary compounds.  相似文献   

13.
The sympathetic nervous system is essential for the cardiovascular responses to stimulation of visceral afferents. It remains unclear how the reflex-evoked sympathetic output is distributed to different vascular beds to initiate the hemodynamic changes. In the present study, we examined changes in regional sympathetic nerve activity and blood flows in anesthetized cats. Cardiovascular reflexes were induced by either electrical stimulation of the right splanchnic nerve or application of 10 microg/ml of bradykinin to the gallbladder. Blood flows were measured using colored microspheres or the Transonic flow meter system. Sympathetic efferent activity was recorded from the left splanchnic, inferior cardiac, and tibial nerves. Stimulation of visceral afferents decreased significantly blood flows in the celiac (from 49 +/- 4 to 25 +/- 3 ml/min) and superior mesenteric (from 35 +/- 4 to 23 +/- 2 ml/min) arteries, and the vascular resistance in the splanchnic bed was profoundly increased. Consistently, stimulation of visceral afferents decreased tissue blood flows in the splanchnic organs. By contrast, activation of visceral afferents increased significantly blood flows in the coronary artery and portal vein but did not alter the vascular resistance of the femoral artery. Furthermore, stimulation of visceral afferents increased significantly sympathetic efferent activity in the splanchnic (182 +/- 44%) but not in the inferior cardiac and tibial nerves. Therefore, this study provides substantial new evidence that stimulation of abdominal visceral afferents differentially induces sympathetic outflow to the splanchnic vascular bed.  相似文献   

14.
刺激家兔肾内感受器和肾传入神经的血流动力学效应   总被引:2,自引:1,他引:1  
马戈  何瑞荣 《生理学报》1990,42(3):262-268
在39只麻醉家兔观察刺激肾脏机械和化学感受器以及电刺激肾传入神经的血流动力学效应。增加输尿管压8—22mmHg 及经输尿管向肾盂内逆向灌注 NaCl(1.0 mol/L)及 KCl(0.15mol/L)溶液时,引起平均动脉压(MAP)和心率(HR)下降;切断双侧缓冲神经后,MAP 降低更为显著。电刺激肾传入神经时,HR 减慢,MAP、肠系膜动脉和后肢动脉灌流压降低,左心室收缩压及其微分值下降,心输出量(CO)和总外周阻力(TPR)减小;切断双侧窦神经和减压神经后,除 HK、CO 和 TPR 外,其余各血流动力学指标的减弱更为显著。由此提示,动脉压力感受器反射对肾传入神经激活的心血管效应有缓冲作用。  相似文献   

15.
应用电解损毁和脑室内注射药物的方法研究了刺激家兔腹部迷走神经外周端所致降压效应的中枢机制。结果表明:1.电刺激延脑闩部尾侧1.5—2mm、中线旁开0.25mm、深1—2mm 处主要引起降压反应。2.电解损毁该部位可以使刺激腹部迷走神经外周端所引起的降压效应显著减弱(n=20,P<0.001),但对刺激减压神经所致降压反应无影响。3.在延脑闩部水平电解损毁减压神经纤维在孤束核的主要投射区可以使刺激减压神经所致降压反应显著减弱,而对刺激腹部迷走神经外周端所致降压反应无影响。4.第四脑室注射5,6-双羟色胺的动物较之注射人工脑脊液的动物颈、胸髓5-羟色胺含量明显降低、动物动脉压增高、心率明显增快、刺激减压神经所致降压反应未见减弱,而刺激腹部迷走神经外周端所致降压反应却明显减小。因此,我们认为家兔腹部迷走神经外周端所致降压效应依赖于延脑闩下部的中缝隐核及连合核等结构,而与减压神经的投射部位无关。延脑中缝核至脊髓的下行性5-HT能神经纤维抑制脊髓交感节前神经元的活动,是这个降压效应的中枢机制之一。  相似文献   

16.
E K Potter  D I McCloskey 《Peptides》1991,12(4):805-808
In anesthetized dogs intravenous injection of neuropeptide Y (NPY) or stimulation of the cardiac sympathetic nerve is followed by a period of attenuation of vagal action at the heart lasting from many minutes to over an hour. Peptide YY (PYY), a related peptide (but one not reported to occur in the heart or its autonomic innervation), also inhibits cardiac vagal action but is more powerful and has a longer duration action. In 5 of 9 dogs, cardiac sympathetic nerve stimulation inhibited vagal action on the heart in control conditions, but relieved preexisting inhibition when repeated in the presence of PYY. In 3 dogs, exogenous NPY inhibited cardiac vagal action in control conditions, but failed to augment preexisting inhibition in the presence of PYY. An explanation offered for these results is that when PYY is occupying receptors on vagal nerve terminals, nerve-released NPY or exogenous NPY is either unable to produce an effect, because it cannot gain access to the receptors, or displaces PYY from at least some receptors and, being less powerful than PYY in its inhibitory action, lessens the preexisting vagal attenuation. The results reported are consistent with the proposal that the factor released from the sympathetic nerves following their stimulation and which is responsible for cardiac vagal inhibition is NPY.  相似文献   

17.
The electrostimulation of vagal nerves, the effect of naloxone and atropine on duodenal afferentation by registering evoked potential (EP) at cortex on direct electrostimulation of duodenum have been studied in acute experiments on cats. It has been established that the stimulation of afferent portion of vagal nerves causes the effect of deprivation of EP, whereas the stimulation with certain intensity of efferent portion of vagal nerves intensifies the duodenal afferentation. The effect of afferentation easeness (relief) has been blocked by the application of naloxone 10-20 microgram on duodenal bulbus, but not on it's i. v. injection and without effect on local application of atropine. It is concluded that the role of vagal nerves on the modulation of duodenal nociception is due to the activation of opiate terminals of the efferent vagal nerve portions.  相似文献   

18.
To further elucidate the functional anatomy of canine cardiac innervation as well as to assess the feasibility of producing regional left ventricular sympathetic denervation, the chronotropic and (or) regional left ventricular inotropic responses produced by stellate or middle cervical ganglion stimulation were investigated in 22 dogs before and after sectioning of individual major cardiopulmonary or cardiac nerves. Sectioning the right or left subclavian ansae abolished all cardiac responses produced by ipsilateral stellate ganglion stimulation. Sectioning a major sympathetic cardiopulmonary nerve, other than the right interganglionic nerve, usually reduced, but seldom abolished, regional inotropic responses elicited by ipsilateral middle cervical ganglion stimulation. Sectioning the dorsal mediastinal cardiac nerves consistently abolished the left ventricular inotropic responses elicited by right middle cervical ganglion stimulation but minimally affected those elicited by left middle cervical ganglion stimulation. In contrast, cutting the left lateral cardiac nerve decreased the inotropic responses in lateral and posterior left ventricular segments elicited by left middle cervical ganglion stimulation but had little effect on the inotropic responses produced by right middle cervical ganglion stimulation. In addition, the ventral mediastinal cardiac nerve was found to be a significant sympathetic efferent pathway from the left-sided ganglia to the left ventricle. These results indicate that the stellate ganglia project axons to the heart via the subclavian ansae and thus effective sympathetic decentralization can be produced by cutting the subclavian ansae; the right-sided cardiac sympathetic efferent innervation of the left ventricle converges intrapericardially in the dorsal mediastinal cardiac nerves; and the left-sided cardiac sympathetic efferent innervation of the left ventricle diverges to innervate the left ventricle by a number of nerves including the dorsal mediastinal, ventral mediastinal, and left lateral cardiac nerves. Thus consistent denervation of a region of the left ventricle can not be accomplished by sectioning an individual cardiopulmonary or cardiac nerve because of the functional and anatomical variability of the neural components in each nerve, as well as the fact that overlapping regions of the left ventricle are innervated by these different nerves.  相似文献   

19.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

20.
Sensitivity of cardiac receptors to several substances after local immune heart damage and the nature of cardiogenic influences on the circulation were studied in acute experiments o anesthetized dogs. The depressor reflexes from the heart were shown to disappear during 30 min. after immune heart damage, and vagal afferent impulse activity decreased. After immune heart damage, cardiac sympathetic afferent fibres were more sensitive to endogenous biological substances than to vagal ones. The sympathetic cardiac afferent system is found to be more sensitive to chemical agents, which is a decisive factor in formation of cardiogenic influences on the circulation during pathological processes in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号