首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast C. parapsilosis CBS7157 is strictly dependent on oxidative metabolism for growth since it lacks a fermentative pathway. It is nevertheless able to grow on high glucose concentrations and also on a glycerol medium supplemented with antimycin A or drugs acting at the level of mitochondrial protein synthesis. Besides its normal respiratory chain C. parapsilosis develops a second electron transfer chain antimycin A-insensitive which allows the oxidation of cytoplasmic NAD(P)H resulting from glycolytic and hexose monophosphate pathways functioning through a route different from the NADH-coenzyme Q oxidoreductase described in S. cerevisiae or from the alternative pathways described in numerous plants and microorganisms. The second respiratory chain of C. parapsilosis involves 2 dehydrogenases specific for NADH and NADPH respectively, which are amytal and mersalyl sensitive and located on the outer face of the inner membrane. Since this antimycin A-insensitive pathway is fully inhibited by myxothiazol, it was hypothesized that electrons are transferred to a quinone pool that is different from the classical coenzyme Q-cytochrome b cycle. Two inhibitory sites were evidenced with myxothiazol, one related to the classical pathway, the other to the second pathway and thus, the second quinone pool could bind to a Q-binding protein at a specific site. Elimination of this second pool leads to a fully antimycin A-sensitive NADH oxidation, whereas its reincorporation in mitochondria allows recovery of an antimycin A-insensitive, myxothiazol sensitive NADH oxidation. The third step in this second respiratory chain involves a specific pool of cytochrome c which can deliver electrons either to a third phosphorylation site or to an alternative oxidase, cytochrome 590. This cytochrome is inhibited by high cyanide concentrations and salicylhydroxamates.  相似文献   

2.
The involvement of a quinone in the antimycin A-insensitive electron transfer from NADH-dehydrogenase to cytochrome c via the alternative respiratory chain of Candida parapsilosis, by-passing complex II, has been studied. After a partial extraction of quinones, the residual respiration was fully antimycin-A-sensitive, but reincorporation of the organic extract partially restored an antimycin A-insensitive respiration. Analysis of quinone content by HPLC, after purification by thin-layer chromatography, evidenced another quinone species in a very low amount. Myxothiazol and stigmatellin were shown to inhibit the alternative pathway but at a higher concentration than required to inhibit the classical pathway. Cytochrome spectra analysis showed that, in the presence of high myxothiazol concentrations, cytochromes c and aa3 were not reduced, while they were in the presence of antimycin A. It is suggested that the secondary pathway of C. parapsilosis involved a specific quinone pool which can be displaced from its binding site by high concentrations of myxothiazol or analogous compounds.  相似文献   

3.
Proton motive force is not obligatory for growth of Escherichia coli.   总被引:13,自引:6,他引:7       下载免费PDF全文
When 50 microM carbonyl cyanide-m-chlorophenyl hydrazone (CCCP), a protonophore, was added to growth medium containing glucose at pH 7.5, Escherichia coli TK1001 (trkD1 kdpABC5) started exponential growth after 30 min; the generation time was 70 min at 37 degrees C. Strain AS1 (acrA), another strain derived from E. coli K-12, also grew in the presence of 50 microM CCCP under the same conditions, except that the lag period was ca. 3 h. When this strain was grown in the presence of 50 microM CCCP and then transferred to fresh medium containing 50 microM CCCP, cells grew without any lag. Neither a membrane potential nor a pH gradient was detected in strain AS1 cells growing in the presence of CCCP. When either succinate or lactate was substituted for glucose, these strains did not grow in the presence of 50 microM CCCP. Thus, it is suggested that E. coli can grow in the absence of a proton motive force when glucose is used as an energy source at pH 7.5.  相似文献   

4.
Analysis of variance was used to evaluate the simultaneous effects of strain, incubation temperature (15 to 25 degrees C), agitation time (0 to 24 h), and initial sulfite concentration (100 to 300 ppm) on glycerol production in grape juice by Saccharomyces cerevisiae. Fourteen strains were studied to determine their growth patterns in the presence of sulfites and ethanol. Baker's yeast strains were more sensitive to sulfite than wine strains, and little growth occurred at initial sulfite levels greater than 150 ppm. Sensitivity to sulfite increased with increasing levels of ethanol. Three strains exhibiting the best growth in the presence of sulfites and ethanol were selected for interaction studies. Fermentations were carried out until the solids content had decreased to less than 6 degrees Brix, which was the point that glycerol content became stable. For the three strains used, the greatest level of glycerol production was observed in the presence of 300 ppm of sulfite for most incubation temperatures and agitation times. There was significant interaction between the strain, incubation temperature, and agitation time parameters for glycerol synthesis, and a response surface method was used to predict the optimal conditions for glycerol production. Under static conditions, the highest level of glycerol production was observed at 20 degrees C, while incubation at 25 degrees C gave the best results when the cultures were agitated for 24 h. Response surface equations were used to predict that the optimum conditions for glycerol production by S. cerevisiae Y11 were a temperature of 22 degrees C, an initial sulfite concentration of 300 ppm, and no agitation, which yielded 0.68 g of glycerol per 100 ml.  相似文献   

5.
A theoretical evaluation of growth yields of yeasts   总被引:12,自引:0,他引:12  
Growth yields of Saccharomyces cerevisiae and Candida utilis in carbon-limited chemostat cultures were evaluated. The yields on ethanol and acetate were much lower in S. cerevisiae, in line with earlier reports that site I phosphorylation is absent in this yeast. However, during aerobic growth on glucose both organisms had the same cell yield. This can be attributed to two factors: --S. cerevisiae had a lower protein content than C. utilis; --uptake of glucose by C. utilis requires energy whereas in S. cerevisiae it occurs via facilitated diffusion. Theoretical calculations showed that, as a result of these two factors, the ATP requirement for biomass formation in C. utilis is 35% higher than in S. cerevisiae (theoretical YATP values of 20.8 and 28.1, respectively). The experimental YATP for anaerobic growth of S. cerevisiae on glucose was 16 g biomass.mol ATP-1. In vivo P/O-ratios can be calculated for aerobic growth on ethanol and acetate, provided that the gap between the theoretical and experimental ATP requirements as observed for growth on glucose is taken into account. This was done in two ways: --via the assumption that the gap is independent of the growth substrate (i.e. a fixed amount of ATP bridges the difference between the theoretical and experimental values). --alternatively, on the assumption that the difference is a fraction of the total ATP expenditure, that is dependent on the substrate. Calculations of P/O-ratios for growth of both yeasts on glucose, ethanol, and acetate made clear that only by assuming a fixed difference between theoretical and experimental ATP requirements, the P/O-ratios are more or less independent of the growth substrate. These P/O-ratios are approximately 30% lower than the calculated mechanistic values.  相似文献   

6.
Several strains of Candida parapsilosis, isolated independently in our laboratory, had their resistance compared to a series of inhibitors which act either at the level of mitochondrial ribosomes (chloramphenicol, erythromycin, paromomycin) or at the level of mitochondrial respiration and oxidative phosphorylation (oligomycin, antimycin A, diuron, carbonylcyanide m-chlorophenylhydrazone). Cells were grown on glycerol media supplemented with one of these inhibitors, and it was demonstrated that the resistance of these yeasts to a large spectrum of antibiotics was due to several features: a resistance to oligomycin was found at the permeation level; the resistance to the other drugs was correlated to the relative insensitivity of cytochrome biosynthesis to the drugs; the cells developed, at the same time, two types of alternative pathways: the one branched at the ubiquinone level which drove electrons from Krebs cycle substrates to oxygen, and the other, antimycin A-insensitive but inhibited by amytal, salicylhydroxamic acid and high cyanide concentrations. This secondary mitochondrial pathway, driving reducing equivalents from cytoplasmic NADH to cytochrome c and then to cytochrome aa3 or to alternate oxidase, allowed the growth of Candida parapsilosis on a non fermentescible medium, supplemented with these drugs.  相似文献   

7.
Glycerol was transported in the fungus Fusarium oxysporum var. lini by a facilitated diffusion transport system with a half-saturation constant, Ks, of 0.5 mM and a maximum velocity, Vmax, of 0.9 mmol (g dry wt)-1 h-1 at pH 5 and 25 degrees C. 1,2-Propanediol was a competitive inhibitor of glycerol transport, but the cells did not actively accumulate 1,2-propanediol. The transport system was partially constitutive. In cells grown in the presence of glucose, glycerol was not transported, indicating that the synthesis of the system was under glucose repression. Glycerol kinase and NADP(+)-dependent glycerol dehydrogenase activities were present under all physiological conditions tested. A flavin-dependent glycerol phosphate dehydrogenase was induced only when glycerol was the sole energy source in the medium. This enzyme, together with the transport system, constitute the regulated steps in the glycerol metabolic pathway.  相似文献   

8.
The addition of antimycin A during the logarithmic phase of growth of heterotrophic Euglena gracilis cultures (in lactate or glucose medium) was immediately followed by decreased respiration and a cessation of grwoth. Induced cyanideresistent respiration appeared 5 h after the addition of the inhibitor then the cells started to grow again and could be cultured in the presence of antimycin A. Thus the cells exhibited a cyanide-and antimycin-resistant respiration which was, in addition, sensitive to salicylhydroxamic acid and propylgallate. Antimycin-adapted Euglena and control cells were compared for their biomass production and protein synthesis. The difference in growth yield between control and antimycin-adapted cells was not as high as would be expected if only the first phosphorylation site of the normal respiratory chain was active in the presence of antimycin A. Furthermore, the ability to incorporate labelled valine into proteins, under resting-cell conditions, was not changed. Strong correlations were established between the effects of respiratory effectors on O2 consumption and valine incorporation. These results suggest that sufficient energy for protein synthesis and growth is provided by the operation of the cyanide-resistant respiratory pathway in antimycin-adapted Euglena.Abbreviations DNP dinitrophenol - PG propylgallate - SHAM salicylhydroxamic acid  相似文献   

9.
The mutation rate to antimycin A resistance was determined for strains of Sacchromyces cerevisiae lacking a functional copy of the structural gene for alcohol dehydrogenase I (ADH1). One type of mutation that can cause antimycin A resistance in these strains is insertion of the transposable element Ty 5' to ADH2, the structural gene for the glucose-repressed isozyme of alcohol dehydrogenase, resulting in expression of this gene during growth on glucose. Here we show that after growth at 15 or 20 degrees C on glucose, 30% of the antimycin A resistance mutations are Ty insertions at ADH2 and another 65% of the mutations are Ty insertions at ADH4, a new locus identified and cloned as described in this paper. At 30 degrees C only 6% of the mutations are Ty insertions at either of these two loci. In addition, we show that the transposition rate is lower in mating-incompetent (a/alpha) cells than in either haploid or diploid mating-competent cells. Our results suggest that under certain conditions Ty transposition may be a major cause of spontaneous mutations in S. cerevisiae.  相似文献   

10.
The respiratory metabolism of Schizosaccharomyces pombe 972h(-), a fission, haplontic, "petite negative" yeast, was studied. Glucose and glycerol are good growth substrates and are oxidized under appropriate conditions. l-Lactate, ethanol, malate, and succinate are oxidized but are poor substrates for growth. d-Lactate and pyruvate are neither oxidized nor used for growth. Limited growth was observed under anaerobic conditions. The addition of 0.3% KNO(3) to a rich medium relieves the oxygen requirement. A continuous increase of cell respiration during growth on repressive concentration of glucose was observed, suggesting the presence of glucose repression of respiration. Reduced nicotinamide adenine dinucleotide (NADH), succinate, alpha-glycerophosphate, and ascorbate plus tetramethyl-p-phenylenediamine are oxidized by a mitochondrial fraction. NADH and succinate oxidations are inhibited by antimycin A and NaCN but not by rotenone, suggesting the absence of the phosphorylation site I and the presence of sites II and III. The effects of several mitochondrial inhibitors on growth and respiration indicate that the requirement of an oxidant for growth is related neither to the functioning of the respiratory electron transport chain nor to the formation of respiratory energy. The previously suggested correlations between the nonviability of vegetative "petites" mutants, the absence of repression of respiration by glucose, and the incapacity to grow under anaerobic conditions are thus not strictly valid for S. pombe.  相似文献   

11.
One advantage of using glycerol as a carbon source for industrial bioprocesses is its higher degree of reduction compared to glucose. In order to exploit this reducing power for the production of reduced compounds thereby significantly increasing maximum theoretical yields, the electrons derived from glycerol oxidation must first be saved in the form of cytosolic NAD(P)H. However, the industrial platform organism Saccharomyces cerevisiae naturally uses an FAD-dependent pathway for glycerol catabolism transferring the electrons to the respiratory chain. Here, we developed a pathway replacement strategy forcing glycerol catabolism through a synthetic, NAD+-dependent route. The required expression cassettes were integrated via CRISPR-Cas9 targeting the endogenous GUT1 locus, thereby abolishing the native FAD-dependent pathway. Interestingly, this pathway replacement even established growth in synthetic glycerol medium of strains naturally unable to grow on glycerol and an engineered derivative of CEN.PK even showed the highest ever reported maximum specific growth rate on glycerol (0.26 h−1).  相似文献   

12.
The metabolic and energetic characterization of the growth of Leuconostoc oenos on glucose-citrate or glucose-fructose mixtures enables the potential role of this bacterium in the wine-making process to be ascertained. Moreover, mixotrophic conditions remain a suitable means for improving biomass productivities of malolactic starter cultures. When the malolactic bacterium L. oenos was grown in batch cultures on complex medium at pH 5.0 with glucose-citrate or glucose-fructose mixtures, enhancement of both the specific growth rate and biomass production yields was observed. While growth was possible on fructose as the sole source of energy, citrate alone did not allow subsequent biomass production. The metabolic interactions between the catabolic pathways of the glucose cosubstrates and the heterofermentation of hexoses led to an increased acetate yield as a result of modified NADH oxidation. However, the calculated global coenzyme regeneration showed that the reducing equivalent balance was never equilibrated. The stimulatory effects of these glucose cosubstrates on growth resulted from increased ATP synthesis by substrate-level phosphorylation via acetate kinase. While the energetic efficiency remained close to 10 g of biomass produced per mol of ATP, the increase in the specific growth rate and biomass production yields was directly related to the rate and yield of ATP generation.  相似文献   

13.
During the production of biodiesel, a significant amount of glycerol is generated which currently has little commercial value. A study on the growth and lipid production of Chlorella protothecoides using glycerol as the carbon source was performed to demonstrate the utility of recycling crude glycerol created during biodiesel production. Glycerol was examined as both the sole carbon source and in combination with glucose. Algae cultures grown on only glycerol in shake flasks showed a specific growth rate and final lipid yield of 0.1/h and 0.31 g lipid/g substrate, respectively. The values were similar to those observed on pure glucose, 0.096/h and 0.24 g lipid/g substrate. When the media contained a mixture of glycerol and glucose, simultaneous uptake of the two substrates was observed. Due to the difference in rates of lipid storage, lipid production was 0.077 g lipid/(l h) during growth on glycerol, while growth on glucose had a productivity of 0.096 g lipid/(l h). During growth on the 9:1 mixture of both glucose and glycerol, lipid productivity was 0.098 g lipid/(l h). In order to simulate the use of waste glycerol from biodiesel production the experiments were repeated and similar growth rates, yields, and lipid productivities were achieved. Therefore, we have demonstrated the promise for simultaneous high growth rates and lipid yields of C. protothecoides heterotrophically grown on mixtures of glycerol.  相似文献   

14.
15.
Abstract Saccharomyces cerevisiae was inoculated into a yeast nitrogen base with either glycerol or glucose as carbon source. Cell proliferation was followed by colony counts on agar medium. Cells in the glycerol-supplemented medium divided less than once in 10 days. When glucose, 6-deoxy-glucose or protoporphyrin IX was added, the cells had doubling times of about 24 h and increased in number to about 0.5 × 106 cells ml−1 Addition of either of the protein kinase C activators oleoyl-acetylglycerol or phorbol-12-myristate-13-acetate did not activate cell proliferation in the glycerol medium. However, when (i) glucose was combined with either protoporphyrin IX or chlorophyllin, or (ii) either protoporphyrin IX or chlorophyllin was combined with either of the protein kinase C activators, the cells had doubling times of about 12 h. Hence, (i) glucose can act as both a carbon source and a signalling molecule for proliferation, and (ii) two systems are involved in activating cell proliferation in S. cerevisiae : one operating through a protein kinase C system and another through a guanylate cyclase system.  相似文献   

16.
To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.  相似文献   

17.
In this paper, we describe a temperature-sensitive mutant of the yeast Saccharomyces cerevisiae (P5-9) which at a restrictive temperature (36 degrees C) shows a pleiotropic defect for transport of many different metabolites. The temperature sensitivity of the mutant is closely related to a reduction in phosphofructokinase activity. This conclusion is based on the following criteria. (i) Both the primary isolate, designated P5-9 (ts [rho-] Ino-), which is an inositol auxotroph and respiration deficient, and a purified derivative, SB4 (ts [rho+] Ino+ ), which is respiration competent and capable of growing in the absence of inositol, are temperature sensitive for growth and ethanol production in media containing glucose or fructose as the sole carbon source. (ii) The respiration-competent derivative SB4 is not temperature sensitive in media containing glycerol or glycerol-pyruvate; glucose inhibits its growth at 36 degrees C in these media. (iii) Assays of glycolytic enzymes in P5-9 and SB4 extracts, prepared from cells incubated for 1 to 2 h at 36 degrees C before harvesting, show selective reduction in phosphofructokinase activity. Analysis of tetrads derived from the cross of mutant and nonmutant haploids indicates that temperature sensitivity for growth is due to a single gene or to two closely linked genes. The biochemical analysis of spores from seven such tetrads revealed a uniform cosegregation of temperature sensitivity for growth and phosphofructokinase activity. Transport and ATP levels were drastically reduced in SB4 cells incubated at 36 degrees C for 1 to 2 h with glucose as the carbon source, but not when glycerol-pyruvate or lactate was the energy source. Therefore, depletion of energy as a result of phosphofructokinase inactivation appears to be the cause of the pleiotropic transport defect observed in the mutant.  相似文献   

18.
Glycerol has become an attractive carbon source in the biotechnology industry owing to its low price and reduced state. However, glycerol is rarely used as a carbon source in Saccharomyces cerevisiae because of its low utilization rate. In this study, we used glycerol as a main carbon source in S. cerevisiae to produce 1,2-propanediol. Metabolically engineered S. cerevisiae strains with overexpression of glycerol dissimilation pathway genes, including glycerol kinase (GUT1), glycerol 3-phosphate dehydrogenase (GUT2), glycerol dehydrogenase (gdh), and a glycerol transporter gene (GUP1), showed increased glycerol utilization and growth rate. More significant improvement of glycerol utilization and growth rate was accomplished by introducing 1,2-propanediol pathway genes, mgs (methylglyoxal synthase) and gldA (glycerol dehydrogenase) from Escherichia coli. By engineering both glycerol dissimilation and 1,2-propanediol pathways, the glycerol utilization and growth rate were improved 141% and 77%, respectively, and a 2.19 g 1,2- propanediol/l titer was achieved in 1% (v/v) glycerolcontaining YEPD medium in engineered S. cerevisiae.  相似文献   

19.
Two brewer's yeasts and one baker's yeast grew with 95% (w/w) pure maltotriose as carbon source in the presence of antimycin A to block respiration. Biomass yields (0.15 and 0.24 g dry yeast g–1 sugar, respectively, with and without antimycin A) were similar for growth on maltose and maltotriose, and yields of ethanol were 80% of stoichiometric. Yeasts harvested during growth on glucose and containing low maltose transport activity did not begin to use maltotriose in the presence of antimycin A until after a long lag phase (up to 50 h), but yeast harvested during growth on maltose, and containing high maltose transport activity, began to use maltotriose after about 25 h. Much shorter lags were observed before growth started in the absence of antimycin A.  相似文献   

20.
B?ck, August (Purdue University, Lafayette, Ind.), and Frederick C. Neidhardt. Properties of a mutant of Escherichia coli with a temperature-sensitive fructose-1,6-diphosphate aldolase. J. Bacteriol. 92:470-476. 1966.-A mutant of Escherichia coli in which fructose-1,6-diphosphate aldolase functions at 30 C but not at 40 C was used to study the physiological effect of a specific block in the Embden-Meyerhof glycolytic pathway. Growth of the mutant at 40 C was found to be inhibited by the presence of glucose or certain related compounds in the medium. At 40 C, glucose was metabolized at 30 to 40% of the control rate and was abnormal in that glucose was converted into other six-carbon substances (probably gluconate, in large part) that were released into the culture medium. The inhibition was complete, but transient; its duration depended upon the initial amount of inhibitor added. The resumption of growth at 40 C was correlated with the further catabolism of the excreted compounds. When glycerol was used to grow the mutant at 40 C, the growth inhibition by glucose was accompanied by cessation of glycerol metabolism. Growth on alpha-glycerol phosphate was not inhibited under these conditions, implicating glycerol kinase as a possible site of inhibition; no inhibition of glycerol kinase by sugar phosphates, however, could be detected in vitro. The inhibitory effect of glucose on growth at 40 C is not caused by a deficit of intracellular adenosine triphosphate, but may be the result of a generalized poisoning of many cell processes by a greatly increased intracellular concentration of fructose-1,6-diphosphate, the substrate of the damaged enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号