首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于肿瘤基因表达谱的肿瘤分类是生物信息学的一个重要研究内容。传统的肿瘤信息特征提取方法大多基于信息基因选择方法,但是在筛选基因时,不可避免的会造成分类信息的流失。提出了一种基于邻接矩阵分解的肿瘤亚型特征提取方法,首先对肿瘤基因表达谱数据构造高斯权邻接矩阵,接着对邻接矩阵进行奇异值分解,最后将分解得到的正交矩阵特征行向量作为分类特征输入支持向量机进行分类识别。采用留一法对白血病两个亚型的基因表达谱数据集进行实验,实验结果证明了该方法的可行性和有效性。  相似文献   

2.
3.
4.
5.
6.
The generation of genomic binding or accessibility data from massively parallel sequencing technologies such as ChIP-seq and DNase-seq continues to accelerate. Yet state-of-the-art computational approaches for the identification of DNA binding motifs often yield motifs of weak predictive power. Here we present a novel computational algorithm called MotifSpec, designed to find predictive motifs, in contrast to over-represented sequence elements. The key distinguishing feature of this algorithm is that it uses a dynamic search space and a learned threshold to find discriminative motifs in combination with the modeling of motifs using a full PWM (position weight matrix) rather than k-mer words or regular expressions. We demonstrate that our approach finds motifs corresponding to known binding specificities in several mammalian ChIP-seq datasets, and that our PWMs classify the ChIP-seq signals with accuracy comparable to, or marginally better than motifs from the best existing algorithms. In other datasets, our algorithm identifies novel motifs where other methods fail. Finally, we apply this algorithm to detect motifs from expression datasets in C. elegans using a dynamic expression similarity metric rather than fixed expression clusters, and find novel predictive motifs.  相似文献   

7.
Due to the recent progress of the DNA microarray technology, a large number of gene expression profile data are being produced. How to analyze gene expression data is an important topic in computational molecular biology. Several studies have been done using the Boolean network as a model of a genetic network. This paper proposes efficient algorithms for identifying Boolean networks of bounded indegree and related biological networks, where identification of a Boolean network can be formalized as a problem of identifying many Boolean functions simultaneously. For the identification of a Boolean network, an O(mnD+1) time naive algorithm and a simple O (mnD) time algorithm are known, where n denotes the number of nodes, m denotes the number of examples, and D denotes the maximum in degree. This paper presents an improved O(momega-2nD + mnD+omega-3) time Monte-Carlo type randomized algorithm, where omega is the exponent of matrix multiplication (currently, omega < 2.376). The algorithm is obtained by combining fast matrix multiplication with the randomized fingerprint function for string matching. Although the algorithm and its analysis are simple, the result is nontrivial and the technique can be applied to several related problems.  相似文献   

8.
9.
10.
In terms of making genes expression data more interpretable and comprehensible, there exists a significant superiority on sparse methods. Many sparse methods, such as penalized matrix decomposition (PMD) and sparse principal component analysis (SPCA), have been applied to extract plants core genes. Supervised algorithms, especially the support vector machine-recursive feature elimination (SVM-RFE) method, always have good performance in gene selection. In this paper, we draw into class information via the total scatter matrix and put forward a class-information-based penalized matrix decomposition (CIPMD) method to improve the gene identification performance of PMD-based method. Firstly, the total scatter matrix is obtained based on different samples of the gene expression data. Secondly, a new data matrix is constructed by decomposing the total scatter matrix. Thirdly, the new data matrix is decomposed by PMD to obtain the sparse eigensamples. Finally, the core genes are identified according to the nonzero entries in eigensamples. The results on simulation data show that CIPMD method can reach higher identification accuracies than the conventional gene identification methods. Moreover, the results on real gene expression data demonstrate that CIPMD method can identify more core genes closely related to the abiotic stresses than the other methods.  相似文献   

11.
12.
目的:改进转录因子结合位点的理论预测方法。方法:构建转录因子结合位点位置权重矩阵,以转录因子结合位点每一位置的碱基保守性指数Mi为参量,利用位置权重打分函数算法(PWMSA)对酵母五种转录因子结合位点进行预测。结果:利用self-consistency和cross-validation两种方法对此算法进行检验,均获得了较高的预测成功率,结果表明5种转录因子结合位点的预测成功率均超过80%。结论:与已有的三种预测转录因子结合位点的软件进行比较,PWMSA算法明显优于其他三种算法,核苷酸水平上的关联系数和结合位点水平上的关联系数分别提高了0.25和0.22。  相似文献   

13.
14.
From gene expression profiles, it is desirable to rebuild cellular dynamic regulation networks to discover more delicate and substantial functions in molecular biology, biochemistry, bioengineering and pharmaceutics. S-system model is suitable to characterize biochemical network systems and capable to analyze the regulatory system dynamics. However, inference of an S-system model of N-gene genetic networks has 2N(N+1) parameters in a set of non-linear differential equations to be optimized. This paper proposes an intelligent two-stage evolutionary algorithm (iTEA) to efficiently infer the S-system models of genetic networks from time-series data of gene expression. To cope with curse of dimensionality, the proposed algorithm consists of two stages where each uses a divide-and-conquer strategy. The optimization problem is first decomposed into N subproblems having 2(N+1) parameters each. At the first stage, each subproblem is solved using a novel intelligent genetic algorithm (IGA) with intelligent crossover based on orthogonal experimental design (OED). At the second stage, the obtained N solutions to the N subproblems are combined and refined using an OED-based simulated annealing algorithm for handling noisy gene expression profiles. The effectiveness of iTEA is evaluated using simulated expression patterns with and without noise running on a single-processor PC. It is shown that 1) IGA is efficient enough to solve subproblems; 2) IGA is significantly superior to the existing method SPXGA; and 3) iTEA performs well in inferring S-system models for dynamic pathway identification.  相似文献   

15.
16.
人类群体遗传结构的协方差阵主成分分析方法   总被引:3,自引:0,他引:3  
目的:探讨基因频率矩阵的中心化(或均值化)协方差阵主成分分析方法在人类群体遗传结构研究中的适用性和合理性。方法:从基因频率矩阵的结构特征入手,分析中心化、均值化协方差阵主成分分析与标准化相关阵主成分分析在特征根、特征向量以及降维效果等方面的差异,并通过实例比较不同方法在解释群体遗传结构特征上合理性。结果:中心化(或均值化)协方差阵的主成分不仅反映了基因变异程度的“方差信息量权”,而且反映了基因间相互影响程度的“相关信息量权”;标准化相关阵的主成分反映的仅是“相关信息量权”,不包括“方差信息量权”。通过比较中国26个汉族人群HLA-A基因座中心化协方差阵和标准化相关阵2种主成分分析结果,证实中心化协方差阵主成分分析方法在特征根与特征向量、保留主成分的个数和对主成分的群体遗传学解释的合理性等方面均优于标准化相关阵主成分分析方法。结论:在对群体遗传结构进行主成分分析时,应使用中心化(或均值化)变换消除基因频率矩阵中量级的影响,然后在用其协方差阵提取主成分。  相似文献   

17.
Virtual screenings based on molecular docking play a major role in medicinal chemistry for the identification of new bioactive molecules. For this purpose, several docking methods can be used. Here, using Arguslab as software and a Gold Platinum subset library of commercially available compounds from Asinex, two docking methods associated to the scoring function Ascore were employed to investigate virtual screenings. One method is based on a genetic algorithm and the other based on a shape-based method. As case studies, both docking techniques were explored by targeting the PC190723 binding site of FtsZ protein from Staphylococcus aureus and the active site of N8 neuraminidase from Influenza virus. Following four docking sequences for each docking engine, the genetic algorithm led to multiple docking results, whereas the shape-based method gave reproducible results. The present study shows that the stochastic nature of the genetic algorithm will require the biological evaluation of more compounds than the shape-based method. This study showed that both methods are complementary and also led to the identification of neuraminidase and FtsZ potential inhibitors.  相似文献   

18.
K Sato  N Ida  T Ino 《Jikken dobutsu》1989,38(1):55-59
Heritability, phenotypic and genetic correlations of egg characteristics of Japanese quail were investigated to obtain basal information on breeding, strain identification and genetic monitoring. For this study, 3230 eggs produced from 323 female were used. Measurement were taken on egg weight, yolk weight, albumen weight, shell weight, egg shape index, albumen height, specific gravity, shell thickness, shell strength and yolk color. Heritability estimates of egg characteristics were high and ranged from 0.62 to 0.84. Diverse phenotypic and genetic correlations were observed among egg characteristics. These results indicate that individual selection should be the most efficient method of improving egg characteristics and that consideration should be given to the interrelationship of characteristics to accomplish genetic improvement. The possibility exists these assays of egg characteristics can be used for strain identification and genetic monitoring without killing an individual of quail.  相似文献   

19.
Biclustering is an important tool in microarray analysis when only a subset of genes co-regulates in a subset of conditions. Different from standard clustering analyses, biclustering performs simultaneous classification in both gene and condition directions in a microarray data matrix. However, the biclustering problem is inherently intractable and computationally complex. In this paper, we present a new biclustering algorithm based on the geometrical viewpoint of coherent gene expression profiles. In this method, we perform pattern identification based on the Hough transform in a column-pair space. The algorithm is especially suitable for the biclustering analysis of large-scale microarray data. Our studies show that the approach can discover significant biclusters with respect to the increased noise level and regulatory complexity. Furthermore, we also test the ability of our method to locate biologically verifiable biclusters within an annotated set of genes.  相似文献   

20.
Hokeun Sun  Hongzhe Li 《Biometrics》2012,68(4):1197-1206
Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified‐likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re‐estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号