首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sixteen yeast isolates identified as belonging to the genus Sugiyamaella were studied in relation to D-xylose fermentation, xylitol production, and xylanase activities. The yeasts were recovered from rotting wood and sugarcane bagasse samples in different Brazilian regions. Sequence analyses of the internal transcribed spacer (ITS) region and the D1/D2 domains of large subunit rRNA gene showed that these isolates belong to seven new species. The species are described here as Sugiyamaella ayubii f.a., sp. nov. (UFMG-CM-Y607T = CBS 14108T), Sugiyamaella bahiana f.a., sp. nov. (UFMG-CM-Y304T = CBS 13474T), Sugiyamaella bonitensis f.a., sp. nov. (UFMG-CM-Y608T = CBS 14270T), Sugiyamaella carassensis f.a., sp. nov. (UFMG-CM-Y606T = CBS 14107T), Sugiyamaella ligni f.a., sp. nov. (UFMG-CM-Y295T = CBS 13482T), Sugiyamaella valenteae f.a., sp. nov. (UFMG-CM-Y609T = CBS 14109T) and Sugiyamaella xylolytica f.a., sp. nov. (UFMG-CM-Y348T = CBS 13493T). Strains of the described species S. boreocaroliniensis, S. lignohabitans, S. novakii and S. xylanicola, isolated from rotting wood of Brazilian ecosystems, were also compared for traits relevant to xylose metabolism. S. valenteae sp. nov., S. xylolytica sp. nov., S. bahiana sp. nov., S. bonitensis sp. nov., S. boreocarolinensis, S. lignohabitans and S. xylanicola were able to ferment d-xylose to ethanol. Xylitol production was observed for all Sugiyamaella species studied, except for S. ayubii sp. nov. All species studied showed xylanolytic activity, with S. xylanicola, S. lignohabitans and S. valenteae sp. nov. having the highest values. Our results suggest these Sugiyamaella species have good potential for biotechnological applications.  相似文献   

2.
A novel actinomycete strain designated S2T was isolated from Tunisian rhizosphere soil of Lavandula officinalis. This isolate exhibited broad spectrum antibacterial activity against several Gram-positive and Gram-negative bacteria and also antifungal activity against yeast and filamentous fungi. The isolate S2T presents morphological and chemotaxonomic characteristics typical of the members of the genus Streptomyces. Whole cell hydrolysates of S2T were found to contain LL-diaminopimelic acid. The major fatty acids were identified as C16:0, anteiso-C15:0 and iso-C16:0 whereas the predominant menaquinones were found to be MK-9(H6) and MK-9(H8). The polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and three unidentified compounds. The G+C content of the genomic DNA was determined to be 71.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S2T belongs to the genus Streptomyces and is closely related to Streptomyces netropsis DSM 40259T with 99.86% sequence similarity. Multi-locus sequence analysis (MLSA) based on four house-keeping gene alleles (gyrB, recA, trpB, rpoB) showed that isolate S2T is closely related to S. netropsis, with an MLSA distance greater than 0.007. The DNA–DNA relatedness between strain S2T and its near phylogenetic neighbour was 63.6 ± 2.3%, which is lower than the 70% threshold value for delineation of genomic prokaryotic species. This isolate was also distinguished from the type strain S. netropsis DSM 40259T, using a combination of morphological and physiological features. Based on its phenotypic and molecular properties, strain S2T is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces tunisialbus sp. nov. is proposed. The type strain is S2T (= JCM 32165T = DSM 105760T).  相似文献   

3.
A marine bacterial strain, F72T, was isolated from a solitary scleractinian coral, collected in Yap seamounts in the Pacific Ocean. Strain F72T is a Gram-negative, light-yellow-pigmented, motile, rod-shaped bacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain F72T is related to the genus Novosphingobium and has high 16S rRNA gene sequence similarities with the type strains of Novosphingobium pentaromativorans US6-1T (97.7 %), Novosphingobium panipatense SM16T (97.6 %), Novosphingobium mathurense SM117T (97.2 %) and Novosphingobium barchaimii LL02T (97.1 %). Ubiquinone Q-10 was detected as the dominant quinone. The predominant cellular fatty acids were C18:1ω7c and C17:1ω6c. The genomic DNA G+C content of strain F72T was 63.4 mol %. The polar lipids profile contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, phosphatidylcholine, sphingoglycolipid and one uncharacterized lipid. Strain F72T shared DNA relatedness of 25 % with N. pentaromativorans JCM 12182T, 31 % with N. panipatense DSM 22890T, 21 % with N. mathurense DSM 23374T and 26 % with N. barchaimii DSM 25411T. Combined data from phenotypic, phylogenetic and DNA–DNA relatedness studies demonstrated that the strain F72T is a representative of a novel species of the genus Novosphingobium, for which we propose the name Novosphingobium profundi sp. nov. (type strain F72T = KACC 18566T = CGMCC 1.15390T).  相似文献   

4.
5.
A Gram-stain negative, ovoid or short rod-shaped, aerobic and non-motile bacterial strain, designated J82T, was isolated from a seawater sample collected from the coast of Yellow Sea in Qingdao, China. The strain grew at salinities of 1.0–6.0% (w/v) NaCl (optimum, 2.5%). Growth occurred at pH 6.0-8.0 (optimum, pH 7.0) and 10–42 °C (optimum, 28–30 °C). The genomic DNA G + C content was determined to be 57.5 mol%. Q-10 was detected as the respiratory quinone. The major fatty acid (>10%) was Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The polar lipids consisted of phosphatidylethanolamine, two unidentified aminolipids and two unidentified polar lipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain J82T forms a distinct evolutionary lineage within the family Rhodobacteraceae. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, the strain merits recognition as representative of a novel genus and species within the family Rhodobacteraceae for which the name Rubricella aquisinus gen. nov., sp. nov. is proposed. The type strain of Rubricella aquisinus is J82T (= DSM 103377T = CCTCC AB 2016170T).  相似文献   

6.
A novel strain, DCY108T was isolated from soil of a Panax ginseng field, Yeoncheon province (38°04′N 126°57′E), Republic of Korea. Strain DCY108T is Gram-negative, non-motile, non-flagellate, rod-shaped, and aerobic. The bacterium grows optimally at 25–30 °C, pH 6.5–7.0 and 1 % NaCl. Phylogenetically, strain DCY108T is closely related to Pedobacter jejuensis JCM 18824T, Pedobacter aquatilis JCM 13454T, Pedobacter kyungheensis LMG 26577T and the type strain of the genus Pedobacter heparinus DSM 2366T. The DNA–DNA relatedness values between strain DCY108T and its close phylogenetic neighbors were below 30.0 %. The DNA G+C content of strain DCY108T was determined to be 45.1 mol%. The predominant quinone was menaquinone 7 (MK-7). The major polar lipids were identified as phosphatidylethanolamine and three unidentified aminolipids AL1, AL13 and AL17. Iso-C15:00, iso-C17:03OH and summed feature 3 (C16:1 ω7c/C16:1 ω6c) were identified as the major fatty acids present in strain DCY108T. The results of physiological and biochemical tests allowed strain DCY108T to be differentiated phenotypically from other recognized species belonging to the genus Pedobacter. Therefore, it is suggested that the newly isolated organism represents a novel species, for which the name Pedobacter panacis sp. nov is proposed with the type strain designated as DCY108T (=CCTCCAB 2015196T = KCTC 42748T).  相似文献   

7.
During an investigation of the biodiversity of the cultivable bacterial community associated with paralytic shellfish poisoning toxin-producing marine dinoflagellate, Alexandrium minutum a novel algal-associated bacterium, designated strain AT2-AT was isolated. 16S rRNA gene sequence similarity analysis showed that the strain is a member of the genus Ponticoccus, with high sequence similarity to Ponticoccus litoralis DSM 18986T (97.9%) and Ponticoccus lacteus JCM 30379T (96.0%). However, based on the data obtained for the physiological and biochemical characteristics, and low level of DNA–DNA relatedness analysis, the strain could be genotypically and phenotypically differentiated from two type strains of the genus Ponticoccus. Therefore, this algal-associated bacterial strain is concluded to represent a novel species of the genus Ponticoccus, for which the name Ponticoccus alexandrii sp. nov. is proposed. The type strain is AT2-AT (CCTCC AB 2017228 T = KCTC 52626 T ).  相似文献   

8.
A novel actinomycete strain, designated PAL84, was isolated from a Saharan soil sample collected from Béni-Isguen, Ghardaïa (South of Algeria). This strain was studied for its taxonomic position using a polyphasic approach and was identified as a member of the genus Actinokineospora. Phylogenetic analysis showed that strain PAL84 had 16S rRNA gene sequence similarities with members of the genus Actinokineospora ranging from 96.2 % (Actinokineospora inagensis DSM 44258T) to 97.8 % (Actinokineospora baliensis NBRC 104211T). The strain was observed to produce pinkish-purple aerial mycelium and purplish red substrate mycelium, which fragmented readily into chains of non-motile elements. The optimum growth temperature and pH were found to be 25–30 °C and 5.0–7.0, respectively. The cell-wall hydrolysate of strain PAL84 was found to contain meso-diaminopimelic acid and the diagnostic whole-cell sugars were identified as arabinose and galactose. The predominant menaquinone was identified as MK-9 (H4). The major fatty acids were found to be iso-C16:0, iso-C15:0, iso-C16:1 H and iso-C16:0 2OH. The diagnostic phospholipid detected was phosphatidylethanolamine. The genotypic and phenotypic data show that the strain represents a novel species of the genus Actinokineospora, for which the name Actinokineospora mzabensis sp. nov. is proposed, with the type strain PAL84T (=DSM 45961T = CECT 8578T).  相似文献   

9.
The taxonomic position of a new Saccharothrix strain, designated MB46T, isolated from a Saharan soil sample collected in Mzab region (Ghardaïa province, South Algeria) was established following a polyphasic approach. The novel microorganism has morphological and chemical characteristics typical of the members of the genus Saccharothrix and formed a phyletic line at the periphery of the Saccharothrix espanaensis subcluster in the 16S rRNA gene dendrograms. Results of the 16S rRNA gene sequence comparisons revealed that strain MB46T shares high degrees of similarity with S. espanaensis DSM 44229T (99.2%), Saccharothrix variisporea DSM 43911T (98.7%) and Saccharothrix texasensis NRRL B-16134T (98.6%). However, the new strain exhibited only 12.5–17.5% DNA relatedness to the neighbouring Saccharothrix spp. On the basis of phenotypic characteristics, 16S rRNA gene sequence comparisons and DNA-DNA hybridizations, strain MB46T is concluded to represent a novel species of the genus Saccharothrix, for which the name Saccharothrix ghardaiensis sp. nov. (type strain MB46T = DSM 46886T = CECT 9046T) is proposed.  相似文献   

10.
Two novel Gram-stain positive, spore-forming, aerobic actinomycetes, designated NEAU-PCY-1T and NEAU-PCY-2, were isolated from rhizosphere soil of Urtica urens L. collected from Anshan, Liaoning Province, northeast China. The 16S rRNA gene sequence analysis showed that strains NEAU-PCY-1T and NEAU-PCY-2 exhibited 99.8% similarity with each other and are closely related to Streptomyces abietis DSM 42080T (98.2, 98.3%) and Streptomyces fildesensis DSM 41987T (98.0, 98.1%). Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the two strains formed a cluster with these two closely related species. Moreover, DNA–DNA hybridization results and some phenotypic, physiological and biochemical properties differentiated the two strains from their close relatives in the genus Streptomyces. Based on a polyphasic taxonomy study, strains NEAU-PCY-1T and NEAU-PCY-2 are considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces urticae sp. nov. is proposed, with NEAU-PCY-1T (=?DSM 105115T?=?CCTCC AA 2017015T) as the type strain.  相似文献   

11.
A nitrogen-fixing, endospore-forming bacterium, designated strain L201T was isolated from the leaves of Bryophyllum pinnatum growing in South China Agricultural University. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain L201T is affiliated with the genus Paenibacillus, and closely related to Paenibacillus albidus Q4-3T (97.4%), Paenibacillus odorifer DSM 15391T (97.3%) and Paenibacillus borealis DSM 13188T (97.2%). The main fatty acids components was anteiso-C15:0 (48.1%). The predominant isoprenoid quinone was MK-7. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The G+C content of strain L201T was 43.9%. DNA–DNA relatedness between L201T and the reference strain was 29.8%. Biological and biochemical tests, protein patterns, genomic DNA fingerprinting and comparison of cellular fatty acids distinguished strain L201T from the closely related Paenibacillus species. Based on these data, the novel species Paenibacillus bryophyllum sp. nov. is proposed, with the type strain L201T(=?KCTC 33951 T?=?GDMCC 1.1251 T).  相似文献   

12.
An endophytic actinobacterial strain was isolated from a yellowwood tree growing on the slope of Devil’s Peak, Cape Town, South Africa. Analysis of the 16S rRNA gene showed that the strain belongs to the genus Kribbella. Phylogenetic analyses using the 16S rRNA gene and multilocus sequence analysis using the concatenated gene sequences of the gyrB, rpoB, relA, recA and atpD genes showed that strain YPL1T is closely related to the type strains of Kribbella karoonensis and Kribbella shirazensis. DDH experiments showed that strain YPL1T is a distinct genomic species from its close phylogenetic relative, K. karoonensis Q41T. Physiological comparisons further showed that strain YPL1T is phenotypically distinct from the type strains of Kribbella jejuensis, Kribbella aluminosa, K. karoonensis, K. shirazensis and Kribbella swartbergensis. Strain YPL1T is thus presented as the type strain of a novel species, for which the name Kribbella podocarpi sp. nov. (= DSM 29424T = NRRL B-65063T), is proposed.  相似文献   

13.
Gram-staining-negative, uniflagellated, rod-shaped, designated as DCY110T, was isolated from sludge located in Gangwon province, Republic of Korea. The phylogenetic tree of 16S rRNA gene sequence showed that the strain DCY110T belonged to the genus Rhodoferax with a close similarity to Rhodoferax saidenbachensis DSM 22694T (97.7%), Rhodoferax antarcticus DSM 24876T (97.5%), Rhodoferax ferrireducens DSM 15236T (97.3%), and Rhodoferax fermentans JCM 7819T (96.7%). The predominant isoprenoid quinine was ubiquinone (Q-8). DNA G + C content was 62.8 mol%. The major polar lipids were phosphatidylethanolamine and two unidentified phospholipids. The major fatty acids (> 10%) were C12:0, C16:0, summed feature 3 (which comprised C16:1 ω7c and/or C16:1 ω6c). The DNA-DNA relatedness values between the strain DCY110T and the closely related relatives used in this study were lower than 70%. Based on the following polyphasic analysis, the strain DCY110T is considered as a novel species of the genus Rhodoferax, for which the name Rhodoferax koreense sp. nov. is proposed. The type strain is DCY-110T (= KCTC 52288T = JCM 31441T).  相似文献   

14.
An aerobic, Gram-stain negative, non-spore-forming and psychrotolerant bacterium, designated strain XJ109T, was isolated from a sewage water sample collected from Xinjiang Uigur Autonomous Region, China. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XJ109T represents a novel member of the family Flavobacteriaceae. The strain showed 95.5 % similarity with the 16S rRNA gene sequence of Empedobacter brevis LMG 4011T, 95.4 % with Chishuiella changwenlii BY4T, 95.3 % with Empedobacter falsenii NF 993T and 92.3 % with Weeksella virosa DSM 16922T. Strain XJ109T showed the common phenotypic and chemotaxonomic characteristics of the family Flavobacteriaceae, containing menaquinone-6 (MK-6) as the predominant respiratory quinone and iso-C17:0 3OH and iso-C15:0 as the major fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, one unidentified phospholipid and two unidentified lipids. The genomic DNA G+C content was 38.0 mol%. Strain XJ109T was positive for catalase and oxidase activities, and it was observed to grow at 4–30 °C (optimal 16–20 °C), pH 6.5–10.0 (optimal 7.0–7.5) and in media containing 0–2.0 % (w/v) NaCl (optimal 0.5 %). On the basis of the polyphasic evidence presented, strain XJ109T is considered to represent a novel genus and species of the family Flavobacteriaceae, for which the name Algoriella xinjiangensis gen. nov., sp. nov. is proposed. The type strain is XJ109T (=CGMCC 1.10229T=JCM 16590T).  相似文献   

15.
A Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strain, designated T5T, was isolated from the Chishui River in Maotai town, Guizhou Province, Southwest of China. Strain T5T was found to grow optimally at pH 9.0 and 25 °C. The 16S rRNA gene sequence analysis indicated that strain T5T belongs to the family Sphingomonadaceae within the phylum Proteobacteria; the strain T5T clustered with the type strains of Sphingopyxis contaminans, Sphingorhabdus wooponensis and Sphingorhabdus rigui, with which it exhibits 16S rRNA gene sequence similarity values of 96.2–96.9%. The DNA G+C content was 58.5 mol%. The major respiratory quinone was Q-10 and the major polar lipid was phosphatidylethanolamine. The major polyamine was homospermidine and the major fatty acids were C18:1 ω7c (37.5%) and C16:1 ω7c (30.1%). On the basis of phylogenetic, phenotypic and genetic data, strain T5T represents a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus buctiana sp. nov. is proposed. The type strain is T5T (= CGMCC 1.12929T = JCM 30114T). It is also proposed that Sphingopyxis contaminans should be reclassified as a member of the genus Sphingorhabdus.  相似文献   

16.
A novel endophytic actinomycete strain, designated KM-1-2T, was isolated from seeds of Ginkgo biloba at Yangling, China. A polyphasic approach was used to study the taxonomy of strain KM-1-2T and it was found to show a range of phylogenetic and chemotaxonomic properties consistent with those of members of the genus Streptomyces. The diamino acid of the cell wall peptidoglycan was identified as LL-diaminopimelic acid. No diagnostic sugars were detected in whole cell hydrolysates. The predominant menaquinones were identified as MK-9(H6) and MK-9(H8). The diagnostic phospholipids were found to be phosphatidylethanolamine and phosphatidylcholine. The DNA G + C content of the novel strain was determined to be 72.9 mol%. The predominant cellular fatty acids (> 10.0?%) were identified as iso-C14?:?0, iso-C16?:?0, C16?:?0 and C17?:?0 cyclo. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is closely related to Streptomyces carpaticus JCM 6915T (99.3%), Streptomyces harbinensis DSM 42076T (98.9%) and Streptomyces cheonanensis JCM 14549T (98.5%). DNA-DNA hybridizations with these three close relatives gave similarity values of 39.1 ± 1.9, 35.8 ± 2.3, and 47.4 ± 2.7%, respectively, which indicated that strain KM-1-2T represents a novel species of the genus Streptomyces. This is consistent with the morphological, physiological and chemotaxonomic data. Cumulatively, these data suggest that strain KM-1-2T represents a novel Streptomyces species, for which the name Streptomyces ginkgonis sp. nov. is proposed, with the type strain KM-1-2T (= CCTCC AA2016004T = KCTC 39801T).  相似文献   

17.
A Gram-stain-positive, polar flagella-containing, rod-shaped, obligate aerobic, endospore-forming bacterium, strain TK1655T, was isolated from the traditional Korean food gochujang. The 16S rRNA sequence of strain TK1655T was a member of the genus Oceanobacillus similar to that of the type strain of Oceanobacillus oncorhynchi subsp. incaldanensis DSM 16557T (97.2%), O. oncorhynchi subsp. oncorhynchi JCM 12661T (97.1%), O. locisalsi KCTC 13253T (97.0%), and O. sojae JCM 15792T (96.9%). Strain TK1655T was oxidase and catalase positive. Colonies were circular, smooth, low convex, cream in colour, and measured about 0.5–1.0 mm in diameter. The range for growth was 20–40°C (optimal, 30°C), pH 6.0–10.0 (optimal, 7.0), and 2–16% (w/v) NaCl (optimal, 2%). Additionally, the cells contained meso-DAP, and the predominant isoprenoid quinone was MK-7. The complex polar lipids were consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major cellular fatty acid components were iso-C15:0, anteiso-C15:0, iso-C16:0, and anteiso-C17:0, and the DNA G+C content was 40.5%. DNA-DNA relatedness of our novel strain and reference strain O. locisalsi KCTC 13253T, O. oncorhynchi subsp. incaldanensis DSM 16557T, O. oncorhynchi subsp. oncorhynchi JCM 12661T was 45.7, 43.8, and 41.9%. From the results of phenotypic, chemotaxonomic, and phylogenetic analyses of strain TK1655T, we propose the novel species Oceanobacillus gochujangensis sp. nov. The type strain is TK1655T (=KCCM 101304T =KCTC 33014T =CIP 110582T =NBRC 109637T).  相似文献   

18.
Strain H2R21T, a novel actinobacterium, isolated from a forest soil sample collected from Heybeliada, Istanbul, Turkey, and a polyphasic approach was used for characterisation of the strain. Chemotaxonomic and morphological characterisation of strain H2R21T indicated that it belongs to the genus Nonomuraea. 16S rRNA gene sequence similarity showed that the strain is closely related to Nonomuraea purpurea 1SM4-01T (99.1%) and Nonomuraea solani CGMCC 4.7037T (98.4%). DNA–DNA relatedness values were found to be lower than 70% between the isolate and its phylogenetic neighbours N. purpurea 1SM4-01T, N. solani CGMCC 4.7037T and Nonomuraea rhizophila YIM 67092T. The whole cell hydrolysates of strain H2R21T were found to contain meso-diaminopimelic acid as the diagnostic diamino acid and glucose, madurose, mannose and ribose as the cell sugars. The polar lipids were identified as phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, dihydroxy-phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, two glycophospholipids and two unidentified lipids. The predominant menaquinones were identified as MK-9(H4) and MK-9(H6). The major fatty acids were found to be iso-C16:0, iso-C16:0 2OH and C17:0 10-methyl. On the basis of DNA–DNA relatedness data and some phenotypic characteristics, it is evident that strain H2R21T can be distinguished from the closely related species in the genus Nonomuraea. Thus, it is concluded that strain H2R21T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea insulae sp. nov. is proposed. The type strain is H2R21T (= DSM 102915T = CGMCC 4.7338T = KCTC 39769T).  相似文献   

19.
A single strain, designated BF49T, was isolated from a biofilm of a tufa deposit from the Westerhöfer rivulet, Lower Saxony, Germany. The G+C content of the genomic DNA of strain BF49T was 69 mol% and the predominant ubiquinone was Q-8. Major fatty acids were C16:1ω7c/15 iso 2OH and C16:0. Comparative 16S rRNA gene sequence analysis indicated that the isolate was placed within the genus Methylibium, class Betaproteobacteria, distantly related to the type strain Methylibium petroleiphilum LMG 22953T (97.4% similarity), Methylibium fulvum Gsoil 322T (96%), and Methylibium aquaticum IMCC1728T (95.7%). On the basis of phylogenetic and phenotypic distinctness we propose a novel species, Methylibium subsaxonicum sp. nov., with strain BF49T (DSM 19570T, CIP 109700T) as the type strain.  相似文献   

20.
A novel isolate, strain SA-276T, was isolated from the water of Lake St. Ana, a crater lake which is located in Romania. Phylogenetic analysis based on the 16S rRNA gene revealed that the new strain is a member of the family Rhizobiaceae, showing a high pairwise similarity value (97.65%) to Rhizobium tubonense CCBAU 85046T (=?DSM 25379T), Rhizobium leguminosarum USDA 2370T (=?LMG 14904T), Rhizobium anhuiense CCBAU 23252T and Rhizobium laguerreae FB206T. Cells of strain SA-276T were rod-shaped, motile, oxidase negative and weakly catalase positive. The predominant fatty acids were C18:1ω7c and cyclo C19:0ω8c, the major respiratory quinones were Q-10 and Q-9, and the main polar lipids were phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine. The G?+?C content of the genomic DNA of strain SA-276T was 60.8 mol%. The novel isolate can be distinguished from the closest related type strain R. tubonense DSM 25379T based on its broader substrate specificity and positive trypsin enzyme activity. On the basis of the phenotypic, chemotaxonomic and molecular data, strain SA-276T is considered to represent a new species, for which the name Rhizobium aquaticum sp. nov. is proposed. The type strain is SA-276T (=?DSM 29780T?=?JCM 31760T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号