首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic methods are increasingly being used as noninvasive tools to survey populations of wild animals. One challenge of these methods is the sampling of genetic material from the target species. Genetic material of various predators, such as bears, canids, and felids, has been successfully obtained from both hair trapped in snares and scat. However, there is currently no standard procedure for sampling genetic material from the Eurasian Lynx (Lynx lynx). We tested established and newly developed hair snares in two near-natural lynx enclosures in the Bavarian Forest National Park. All snares consisted of a wooden post; they differed in the type of material attached to the post for snaring hair: carpet (velour with 40 nails), wildcat (spruce wood with 2–3?mm deep, horizontal and diagonal ridges), wire brush, doormat, or rubber bands (250?g of rubber bands wrapped around the post). We determined the acceptance of the hair snares by the animals by observing their behavior with the aid of video cameras. The number of rubbing events on the different trap types did not significantly differ, but the rubbing duration was longer for the doormat hair snare. The wire brush hair snare collected the highest total amount of hair and — beside the carpet — the highest amount of hair per unit of time. Almost all hair trapped on the wire brush snare were retained during a 2-week exposure to the elements outside of the enclosures. The results of our study may hold for other felid species with hair characteristics similar to those of lynx.  相似文献   

2.
Increasingly, point‐count data are used to estimate occupancy, the probability that a species is present at a given location; occupancy accounts for imperfect detection, the probability that a species is detected given that it is present. To our knowledge, effects of sampling duration on inferences from models of bird occupancy have not been evaluated. Our objective was to determine whether changing count duration from 5 to 8 min affected inferences about the occupancy of birds sampled in the Chesapeake Bay Lowlands (eastern United States) and the central and western Great Basin (western United States) in 2012 and 2013. We examined the proportion of species (two doves, one cuckoo, two swifts, five hummingbirds, 11 woodpeckers, and 122 passerines) for which estimates of detection probability were ≥ 0.3. For species with single‐season detection probabilities ≥ 0.3, we compared occupancy estimates derived from 5‐ and 8‐min counts. We also compared estimates for three species sampled annually for 5 yr in the central Great Basin. Detection probabilities based on both the 5‐ and 8‐min counts were ≥ 0.3 for 40% ± 3% of the species in an ecosystem. Extending the count duration from 5 to 8 min increased the detection probability to ≥ 0.3 for 5% ± 0.5% of the species. We found no difference in occupancy estimates that were based on 5‐ versus 8‐min counts for species sampled over two or five consecutive years. However, for 97% of species sampled over 2 yr, precision of occupancy estimates that were based on 8‐min counts averaged 12% ± 2% higher than those based on 5‐min counts. We suggest that it may be worthwhile to conduct a pilot season to determine the number of locations and surveys needed to achieve detection probabilities that are sufficiently high to estimate occupancy for species of interest.  相似文献   

3.
Mammalian carnivore communities affect entire ecosystem functioning and structure. However, their large spatial requirements, preferred habitats, low densities, and elusive behavior deem them difficult to study. In recent years, noninvasive techniques have become much more common as they can be used to monitor multiple carnivore species across large areas at a relatively modest cost. Hair snares have the potential to fulfill such requirements, but have rarely been tested in Europe. Our objective was to quantitatively assess the effectiveness of hair snares for surveying mesocarnivores in the Iberian Peninsula (Southwestern Europe), by comparison with camera-trapping. We used an occupancy modeling framework to assess method-specific detectability and occupancy estimates and hypothesized that detection probabilities would be influenced by season, sampling method, and habitat-related variables. A total of 163 hair samples were collected, of which 136 potentially belonged to mesocarnivores. Genetic identification success varied with diagnostic method: 25.2 % using mitochondrial CR, and 9.9 % using the IRBP nuclear gene. Naïve occupancy estimates were, in average, 5.3?±?1.2 times higher with camera-trapping than with hair-snaring, and method-specific detection probabilities revealed that camera traps were, in average, 6.7?±?1.1 times more effective in detecting target species. Overall, few site-specific covariates revealed significant effects on mesocarnivore detectability. Camera traps were a more efficient method for detecting mesocarnivores and estimating their occurrence when compared to hair snares. To improve hair snares' low detection probabilities, we suggest increasing the number of sampling occasions and the frequency at which hair snares are checked. With some refinements to increase detection rates and the success of genetic identification, hair-snaring methods may be valuable for providing deeper insights into population parameters, attained through adequate analysis of genetic information, that is not possible with camera traps.  相似文献   

4.
Nutria (Myocastor coypus) is a native aquatic rodent to South America, and was introduced to Europe, Asia, Africa and North America for fur farming. The South American nutria or coypu is now considered a pest in the area of introduction, because of its negative impact on biological diversity and ecological relationships. Having information on the invasion range of exotic species is crucial for understanding the ecology of invasive spread and for making good conservation and management planning to address this problem. At the beginning of the 20th century, nutria was introduced into Asia. Nutria was recorded for the first time in Iran in 1995. In the present study we proposed a multiple spatial scale approach to predict the invasion trends of the nutria in Iran, and to define up the “suitable scale” for predicting the invasion trends of this species. Our results highlighted the importance of environmental variables including vegetation density (for food and nesting) and water resource (streams, rivers, and lakes) in distribution of the nutria. Potential areas for the presence of the nutria are located near the Caspian Sea, west and central Iran which receive more precipitation than other parts of the country. Therefore, these parts of Iran may face a much greater risk of invasion risk in the future. Moreover, these results can show the possible risk of nutria invasion to the northern and western neighbors of Iran.  相似文献   

5.
Nutria (Myocastor coypus) is a large semi-aquatic rodent native to South America, introduced worldwide for fur farming in the early twentieth century. In Japan, 150 individuals were introduced from the USA in 1939, and their feral populations are currently causing serious problems to aquatic ecosystem and agriculture. Okayama Plain is the largest habitat of nutria in Japan, established by the escapees from breeding farms around the middle of the 1940s. Here, we examined genetic structure of Okayama population and inferred gene flow among populations, using mtDNA and ten microsatellite markers (MS), to estimate eradication units for the effectiveness of population control. For mtDNA, two haplotypes (A and B) were detected in cytochrome b region. Haplotype A was widely distributed in Okayama Plain, while haplotype B was mainly observed around Yoshii River. For MS, Okayama population showed high genetic diversity, comparable to USA and Argentine populations. Genetic differentiation was recognized among drainages with a significant isolation-by-distance pattern. Multivariate analyses and Bayesian clustering method suggested two genetic clusters and radial dispersal around the coast of the Kojima Bay, while these clusters did not necessarily concord with mtDNA haplotypes in distribution. Genetic heterogeneity tended to be higher in males than in females, and females exhibited a higher relatedness than males in Asahi River. These results suggest that nutria in Okayama Plain originated from farming sites downstream in Yoshii and Takahashi Rivers and have expanded its distribution along rivers via tributaries. Mitochondrial-nuclear discordance seems to be due to male-biased dispersal in nutria.  相似文献   

6.
Biodiversity monitoring is crucial for effective conservation efforts. Effective monitoring allows managers to determine the status and trends of biodiversity, as well as the success of conservation actions. The population of the Broad-toothed Rats (Mastacomys fuscus) in the Barrington Tops National Park New South Wales, Australia has been monitored since 1999 via scat and live-trapping surveys. We reviewed the methods used and analysed the data produced with the aim of describing patterns of population change over time using a range of outcome variables and identifying different climate correlates. A secondary aim was to explore the use of population statistics that account for imperfect detection by comparing naïve occupancy, with an index of relative abundance based on trap effort, the latency to find scats during scat surveys and an occupancy model based on trapping surveys. Neither of these three methods accounts for detectability variation. Naïve occupancy decreased slightly over time, while the relative abundance based on trap effort revealed no evidence of change. Additionally, naïve occupancy decreased with increasing temperature while temperature had no clear impact on relative abundance. Finally, precipitation had no impact on either naïve occupancy or relative abundance. We found no evidence of a relationship between the latency to find scats and the index of relative abundance, suggesting that one or neither is related to actual abundance. Finally, a multi-season occupancy model found occupancy probability to be 0.78 ± 0.23 (standard error); detection probability as 0.51 ± 0.06; seasonal colonisation rate as 0.36 ± 0.13 and seasonal extinction rate at 0.44 ± 0.13. We conclude that despite significant investment in monitoring, this historical data set does not allow managers to ascertain whether population change has occurred and to identify potential drivers of change. Careful consideration of future methods, in particular, whether there is imperfect detection in scat surveys, will help to inform future monitoring.  相似文献   

7.
Site occupancy provides a reasonable estimate of population status and trends, and it also provides an unbiased, cost-effective alternative method for large-scale, multispecies monitoring programs. In this study, we used camera-trapping data to determine carnivoran occupancy and associated environmental factors in Serra da Malcata Nature Reserve, Portugal. The study was intended as a precursor of further long-term multispecies monitoring programs. We estimated carnivoran species occupancy using a likelihood-based method, using the software PRESENCE. The major conclusions of the study were (1) fox occupancy tends to be independent of environmental factors; (2) stone marten occupancy is related with habitat variables, landscape structure, and preys; (3) common genet occupancy is related to broad leaf formations and preys; and (4) mongoose occupancy is higher in extensive areas of shrub habitats. Methodologically, we demonstrated the importance of modeling detection probabilities for species with low or variable detection rates. In the future, monitoring programs could benefit from incorporating estimates of detection probabilities into their design and analysis.  相似文献   

8.
ABSTRACT Nutria (Myocastor coypus) are an important part of the Louisiana (USA) fur industry, but high densities of nutria cause extensive damage to coastal marsh ecosystems. Hence, there is a need to develop improved methods for targeted management of nutria. We screened 14 olfactory cues as potential lures for nutria, first in controlled settings and then in the field, to see if nutria capture rates using foothold traps would increase. In Y-maze trials, nutria most frequently selected olfactory cues of a synthetic formulation of nutria anal-gland secretion and nutria fur extract. We examined the 3 most selected attractants in Y-maze trials and female nutria urine under field conditions to compare trapping success over untreated traps. Capture probability was nearly 2.5 times greater for fur wash than control and 2 times greater for urine than control (relative risk = 2.43 and 2.01, respectively). The results suggest that use of semiochemicals and synthetic formulations of semiochemicals increased nutria trapping success. Development and use of effective synthetic semiochemicals could benefit resource managers nationwide who are responsible for reducing damage caused by this invasive herbivore.  相似文献   

9.
Monitoring animal populations can be challenging, particularly when working with species that are cryptic, rare, or occur at low densities. The northern river otter (Lontra canadensis) is a cryptic, semi-aquatic carnivore that has been intensively studied in recent decades, yet much of what is known about its ecology is a result of studies that have employed indirect methods of detection and monitoring. These indirect methods, such as latrine or other sign surveys, have been the primary approach used for studying distribution, abundance, and habitat use of otters, with minimal representation of direct methods. In this study, we compared direct (camera traps) and indirect (scat count surveys) methods of evaluating detection probabilities and site use patterns of otters at latrines. We found that the direct method produced a significantly greater monthly detection probability than the indirect method and that camera surveys resulted in fewer occurrences of false negatives than scat surveys. However, the number of scats deposited at a site was positively correlated with number of visits by otters at a site (Tau-b = 0.675). Thus, while cameras outperformed scat counts in terms of detection, the two methods were comparable in determining intensity of site use. We conclude that, depending on the parameter of interest, scat counts may be an acceptable surrogate for more direct methods of monitoring otters and other cryptic species. We caution, however, that in the absence of comparative methodological data, direct methods such as camera trapping should be preferred when making inferences about animal distribution, abundance, or habitat use.  相似文献   

10.
European Red Fox (Vulpes vulpes) baiting with 1080 poison (sodium fluoroacetate) is undertaken in many Australian sites to reduce fox abundance and to protect vulnerable native species from predation. The longest continuous use of fox baiting for fauna conservation commenced in south‐west Western Australia in the 1980s and includes baiting Dryandra Woodland and Tutanning Nature Reserve. The trap success of the Woylie (Bettongia penicillata) in these two reserves initially increased more than 20‐fold after the commencement of baiting and was maintained until 2000. Woylie captures then decreased rapidly, despite ongoing fox baiting, so the long‐term efficacy of 1080 baiting was questioned. Here, fox density and probabilities of detection, re‐detection and survival between replicated baited and unbaited sites were compared by modelling capture–recapture of individual foxes. These were identified from microsatellite DNA genotypes obtained non‐invasively from hair, scat and saliva samples. The frequency and duration of fox residencies were also quantified. Remote cameras were used to determine the fate of baits but uptake by foxes was low, whereas nontarget species' bait uptake was high. Nevertheless, foxes inhabiting baited reserves had significantly higher mortality, shorter residency times, and 80% lower density than foxes inhabiting unbaited reserves. Baiting continues to significantly reduce fox abundance after more than 25 years of continuous use. This has positive implications for fox control programmes throughout Australia but reduced fox abundance may facilitate increased predation by feral Cats (Felis catus).  相似文献   

11.
A single-species environmental DNA (eDNA) method was developed to sample for a small, benthic rare species, Eastern Sand Darter (Ammocrypta pellucida Putnam, 1863) in two large Lake Ontario embayments. Summer water sampling allowed for: (a) surveys of habitats (Wellers Bay) where traditional fish sampling gear could not be used; and, (b) a comparison between eDNA and seining-based detection probabilities at known occupied habitats (West Lake). In 2018, replicate (n = 3) 1 L water samples were collected from 90 Wellers Bay sites and 71 West Lake sites. A site-occupancy model, a hierarchical logistic regression model, was fitted to determine site occupancy, sample occupancy (presence of Eastern Sand Darter DNA in a water sample) and probability of detection (p) based on replicate quantitative polymerase chain reaction (qPCR) results for each water sample. Eastern Sand Darter was detected at 10 West Lake sites, but not from Wellers Bay. Mean site occupancy was 0.31 (0.12–0.70; 95% CLs), mean sample occupancy was 0.28 (0.09–0.58; 95% CLs), and mean detection probability in a subsample (i.e., successful qPCR amplification) given it was present was 0.40 (0.25–0.55; 95% CLs). While the eDNA method successfully detected Eastern Sand Darter from known occupied areas in West Lake, it was not more effective for assessing local site occupancy than traditional sampling methods, such as the seine.  相似文献   

12.
Estimation of site occupancy rates when detection probabilities are <1 is well established in wildlife science. Data from multiple visits to a sample of sites are used to estimate detection probabilities and the proportion of sites occupied by focal species. In this article we describe how site occupancy methods can be applied to estimate occupancy rates of plants and other sessile organisms. We illustrate this approach and the pitfalls of ignoring incomplete detection using spatial data for 2 aquatic vascular plants collected under the Upper Mississippi River's Long Term Resource Monitoring Program (LTRMP). Site occupancy models considered include: a naïve model that ignores incomplete detection, a simple site occupancy model assuming a constant occupancy rate and a constant probability of detection across sites, several models that allow site occupancy rates and probabilities of detection to vary with habitat characteristics, and mixture models that allow for unexplained variation in detection probabilities. We used information theoretic methods to rank competing models and bootstrapping to evaluate the goodness-of-fit of the final models. Results of our analysis confirm that ignoring incomplete detection can result in biased estimates of occupancy rates. Estimates of site occupancy rates for 2 aquatic plant species were 19–36% higher compared to naive estimates that ignored probabilities of detection <1. Simulations indicate that final models have little bias when 50 or more sites are sampled, and little gains in precision could be expected for sample sizes >300. We recommend applying site occupancy methods for monitoring presence of aquatic species.  相似文献   

13.
Winter bait stations are becoming a commonly used technique for multispecies inventory and monitoring but a technical evaluation of their effectiveness is lacking. Bait stations have three components: carcass attractant, remote camera, and hair snare. Our 22,975 km2 mountainous study area was stratified with a 5 × 5 km sampling grid centered on northern Idaho and including portions of Washington, Montana, and British Columbia. From 2010–14, we conducted 563 sampling sessions at 497 bait stations in 453 5 × 5 km cells. We evaluated the effectiveness of cameras and hair snare DNA collection at stations to detect species and individual animals, factors affecting DNA viability, the effectiveness of re‐visiting stations, and the influence of elevation, seasonality, and latency on species detections. Cameras were more effective at detecting multiple species than DNA hair snaring. Length of deployment time and elevation increased genetic species ID success but individual ID success rates were increased only by collecting hairs earlier in the season. Re‐visiting stations did not change camera or genetic species detection results but did increase the number of individual genotypes identified. Marten and fisher were detected quickly while bobcat and coyote showed longer latency to detection. Seasonality significantly affected coyote and bobcat detections but not marten, fisher, or weasel. Multispecies bait station study design should incorporate mixed elevation sites with stratified seasonality. Priority should be given to including cameras as components of bait stations over hair snares, unless there is a specific genetic goal to the study. A hair snare component should be added, however, if individual ID or genetic data are necessary. Winter stations should be deployed a minimum of 45–60 days to allow for detection of low density species and species with long latency to detection times. Hair samples should be collected prior to DNA‐degrading late season rain events. Re‐visiting stations does not change which species are detected at stations; therefore, studies with objectives to delineate species presence or distribution will be more effective if they focus on deploying more stations across a broader landscape in lieu of surveying the same site multiple times.  相似文献   

14.
American mink (Neovison vison) are secretive, semi-aquatic carnivores that often require noninvasive methods based on field signs such as tracks and scat for determining their spatial distribution. Most previous assessments of survey methods for American mink have been conducted in the United Kingdom where mink are an invasive species. We evaluated survey techniques for American mink in riparian habitat in its native range in the midwestern United States. We used occupancy modeling to compare detection rates between walking surveys and mink raft surveys, and we evaluated the potential for environmental covariates and observer bias to influence detectability from walking surveys. Per-survey detection probabilities were greater for walking surveys (0.72) than for mink rafts (0.39). Walking surveys also were cheaper and easier to conduct in small streams prone to flooding when compared to mink raft surveys. However, detection probabilities from walking surveys were affected by observer bias, recent rainfall, substrate, and date. We recommend walking surveys for determining the distribution of American mink in riparian habitat in the Midwest if occupancy modeling is applied to adjust for environmental and observer effects on detectability. We used such an approach to demonstrate occupancy dynamics of mink were related to variable water depths, which has implications for how this carnivore might be influenced by climate change. Mink rafts standardize the substrate for recording mink tracks and reduce the likelihood of observer effects. For studies using many volunteers, we recommend mink rafts for determining site occupancy by American mink. © 2011 The Wildlife Society.  相似文献   

15.
Latrines serve as important communication networks among felids for transmitting information relative to social dominance, reproductive status, and defense of hunting areas. During January 2011–August 2012, we monitored 10 bobcat (Lynx rufus) latrines in the northern Lower Peninsula (NLP) of Michigan, USA, using motion-sensitive cameras to estimate bobcat visitation and scat deposition rates among 3 biological seasons (mating, kitten-rearing, non-mating). Bobcat visitation rates differed among the 3 seasons. We found equal number of visits during the mating and kitten-rearing seasons, and lower visitation rates during the non-mating season. Scat deposition rates differed among the 3 seasons. We found a net gain of scats deposited during the mating and non-mating seasons, whereas there was a net loss of scats during the kitten-rearing season. An artificial latrine protocol we developed yielded visitation at 4 of 12 artificial latrine sites. Monitoring natural and artificial latrines during the mating and kitten-rearing seasons could provide valuable data for managing bobcat populations. © 2020 The Wildlife Society.  相似文献   

16.
ABSTRACT Traditional methods of monitoring gray wolves (Canis lupus) are expensive and invasive and require extensive efforts to capture individual animals. Noninvasive genetic sampling (NGS) is an alternative method that can provide data to answer management questions and complement already-existing methods. In a 2-year study, we tested this approach for Idaho gray wolves in areas of known high and low wolf density. To focus sampling efforts across a large study area and increase our chances of detecting reproductive packs, we visited 964 areas with landscape characteristics similar to known wolf rendezvous sites. We collected scat or hair samples from 20% of sites and identified 122 wolves, using 8–9 microsatellite loci. We used the minimum count of wolves to accurately detect known differences in wolf density. Maximum likelihood and Bayesian single-session population estimators performed similarly and accurately estimated the population size, compared with a radiotelemetry population estimate, in both years, and an average of 1.7 captures per individual were necessary for achieving accurate population estimates. Subsampling scenarios revealed that both scat and hair samples were important for achieving accurate population estimates, but visiting 75% and 50% of the sites still gave reasonable estimates and reduced costs. Our research provides managers with an efficient and accurate method for monitoring high-density and low-density wolf populations in remote areas.  相似文献   

17.
Many acoustic surveys have been initiated to monitor anuran populations in North America. We used the Ontario Backyard Frog Survey to examine temporal and spatial trends, from 1994 to 2001. Our data suggest that there have been no consistent trends in site occupancy during this time period, but there were some differences among years. Both American toads and northern leopard frogs were more prevalent in 1995 than in 1994. Similarly, species richness was higher in 1995 and 1996 compared to most other years. Individual populations of species, however, often were not stable. Extinction and colonization rates varied among species, and ranged from 1.5 to 19.5% per year, and site occupancy was negatively correlated with extinction rates. Daily detection probabilities were often quite low, and were primarily driven by the perceived calling intensity. We recommend: (i) that monitoring programs attempt to preserve common survey routes, despite heavy turnover of volunteers, (ii) calling surveys be timed to maximize detection probabilities, and (iii) analyses based upon landscape features and GIS approaches should be used to determine localized changes in site occupancy or species richness.  相似文献   

18.
Sign surveys are commonly used to study and monitor wildlife species but may be flawed when surveys are conducted only once and cover short distances, which can lead to a lack of accountability for false absences. Multiple observers surveyed for river otter (Lontra canadensis) scat and tracks along stream and reservoir shorelines at 110 randomly selected sites in eastern Kansas from January to April 2008 and 2009 to determine if detection probability differed among substrates, sign types, observers, survey lengths, and near access points. We estimated detection probabilities (p) of river otters using occupancy models in Program PRESENCE. Mean detection probability for a 400-m survey was highest in mud substrates (p = 0.60) and lowest in snow (p = 0.18) and leaf litter substrates (p = 0.27). Scat had a higher detection probability (p = 0.53) than tracks (p = 0.18), and experienced observers had higher detection probabilities (p > 0.71) than novice observers (p < 0.55). Detection probabilities increased almost 3-fold as survey length increased from 200 m to 1,000 m, and otter sign was not concentrated near access points. After accounting for imperfect detection, our estimates of otter site occupancy based on a 400-m survey increased >3-fold, providing further evidence of the potential negative bias that can occur in estimates from sign surveys when imperfect detection is not addressed. Our study identifies areas for improvement in sign survey methodologies and results are applicable for sign surveys commonly used for many species across a range of habitats. © 2010 The Wildlife Society  相似文献   

19.
Analysis of data from point counts, a common method for monitoring bird population trends, has evolved to produce estimates of various population parameters (e.g., density, abundance, and occupancy) while simultaneously estimating detection probability. An important consideration when designing studies using point counts is to maximize detection probability while minimizing variation in detection probability both within and between counts. Our objectives were to estimate detection probabilities for three marsh songbirds, including Marsh Wrens (Cistothorus palustris), Swamp Sparrows (Melospiza georgiana), and Yellow‐headed Blackbirds (Xanthocephalus xanthocephalus), as a function of weather covariates and to evaluate temporal variability in detection probability of these three species. We conducted paired, unlimited radius, 10‐min point counts during consecutive morning and evening survey periods for our three focal species at 56 wetlands in Iowa from 20 April to 10 July 2010. Mean detection probabilities ranged from 0.272 (SE = 0.042) for Marsh Wrens to 0.365 (SE = 0.052) for Swamp Sparrows. Time of season was positively correlated with detection probability for Swamp Sparrows, but was negatively correlated with detection probability for Yellow‐headed Blackbirds, suggesting that detection probability increased during the breeding season for Swamp Sparrows and was highest early in the breeding season for Yellow‐headed Blackbirds. Understanding how detection probabilities of marsh songbirds vary throughout the breeding season allows targeted survey efforts that maximize detection probabilities for these species. Furthermore, consistent detection probabilities of marsh songbirds during morning and evening survey periods mean that investigators have more time to conduct surveys for these birds, allowing greater flexibility to increase spatial and temporal replication of surveys that could provide more precise estimates of desired population parameters.  相似文献   

20.
Of 471 specimens examined from foxes, raccoons, muskrats, otters, and beavers living in wetlands adjacent to the Chesapeake Bay, 36 were positive for five types of Cryptosporidium, including the C. canis dog and fox genotypes, Cryptosporidium muskrat genotypes I and II, and Cryptosporidium skunk genotype. Thus, fur-bearing mammals in watersheds excreted host-adapted Cryptosporidium oocysts that are not known to be of significant public health importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号