首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hybridization is regarded as a rapid mechanism for increasing genetic variation that can potentially enhance invasiveness. Tamarix hybrids appear to be the dominant genotypes in their invasions. Exotic Tamarix are declared invasive in South Africa and the exotic T. chinensis and T. ramosissima are known to hybridize between themselves, and with the indigenous T. usneoides. However, until now, it was not known which species or hybrid is the most prevalent in the invasion. With a biocontrol programme being considered as a way of suppressing the alien Tamarix populations, it is important to document the population genetic dynamics of all species in the region. This investigation sought to identify Tamarix species in southern Africa and their hybrids, describe their population structure, and reveal the geographic origin of the invasive species. To achieve this, nuclear Internal Transcribed Spacer (ITS) sequence data and the multilocus Amplified Fragment Length Polymorphisms (AFLPs) markers were used. Phylogenetic analysis and population genetic structure confirmed the presence of three species in South Africa (T. chinensis, T. ramosissima and T. usneoides) with their hybrids. The indigenous T. usneoides is clearly genetically distant from the alien species T. chinensis and T. ramosissima. Interestingly, the Tamarix infestation in South Africa is dominated (64.7 %) by hybrids between T. chinensis and T. ramosissima. The exotic species match their counterparts from their places of origin in Eurasia, as well as those forming part of the invasion in the US.  相似文献   

2.
Saltcedars are woody plants in the genus Tamarix L. (Caryophyllales: Tamaricaceae) and are native to Eurasia and Africa. Several species have become invasive in the Americas, Australia and South Africa. In Argentina there are four species of Tamarix distributed in arid, semi-arid and coastal areas of most provinces. The taxonomic isolation of Tamarix spp. in Argentina, their widespread distribution, negative impact to natural areas and lack of impact from existing natural enemies all indicate that Tamarix is an ideal candidate for classical biological control in Argentina. Biological control of Tamarix spp. has been rapid and highly successful in the USA after the introduction of four Diorhabda spp. (Coleoptera: Chrysomelidae). Biological control of Tamarix spp. in Argentina could be implemented easily, rapidly, and at a low cost by utilizing the information developed in the USA.  相似文献   

3.
The invasive tree Solanum mauritianum Scopoli remains one of the world’s most widespread environmental weeds. Despite biocontrol providing one of the few viable long-term solutions to tackling S. mauritianum invasions globally, only South Africa and, more recently, New Zealand, have programmes in place. Ongoing biocontrol efforts against S. mauritianum are reviewed here with particular reference to South Africa. The South African programme has suffered a troubled history, with considerable research efforts culminating in the eventual release and establishment of only two insect agents, Gargaphia decoris Drake and Anthonomus santacruzi Hustache. The difficulties experienced have hindered research into new agents, causing apprehension in using biocontrol internationally. However, recent studies have demonstrated that biocontrol may be deserving of renewed investment, particularly within an integrated management context. In this review, we advocate for the revival of the S. mauritianum biocontrol programme in South Africa, and discuss possible avenues for future research internationally.  相似文献   

4.
During the first half of the twentieth century, two accidental cases of introduction of Pissodes weevils were recorded from the southern hemisphere. The weevils in South Africa were identified as the deodar weevil (Pissodes nemorensis) and those in South America as the small banded pine weevil (Pissodes castaneus). Wide distribution of the two species in their invasive range, general difficulty in identifying some Pissodes spp., and the varying feeding and breeding behaviours of the species in South Africa has necessitated better evidence of species identity and genetic diversity of both species and population structure of the species in South Africa. Barcoding and the Jerry-to-Pat region of the COI gene were investigated. Morphometric data of the South African species was analysed. Our results confirmed the introduction of only one Pissodes species of North American origin to South Africa. However, this species is not P. nemorensis, but an unrecognized species of the P. strobi complex or a hybrid between P. strobi and P. nemorensis. Only P. castaneus, of European origin, was identified from South America. We identified ten mitochondrial DNA haplotypes from South Africa with evidence of moderate genetic structure among geographic populations. Terminal leader and bole-feeding weevils did not differ at the COI locus. A single haplotype was identified from populations of P. castaneus in South America. Results of the present study will have implications on quarantine, research and management of these insect species.  相似文献   

5.
Woody shrubs in the genus Tamarix L. (Tamaricaceae) were introduced into western North America in the nineteenth century and have invaded riparian areas, acting as drivers of ecosystem change by altering fire cycles, soil chemistry, hydrology and native plant composition. The scope and severity of the invasions provided impetus for a classical weed biological control program using Diorhabda spp. (Coleoptera: Chrysomelidae). Since the first releases in 2001 Diorhabda spp. have moved into many of the areas dominated by Tamarix resulting in defoliations, canopy dieback, and in some locations substantial Tamarix mortality. Success of the program has been overshadowed by concern that Tamarix is used by a federally-listed bird sub-species, the southwestern willow flycatcher. The controversy has led to lawsuits, cancelled biological control research and release permits and to a negative perception of Tamarix biocontrol by some. Long term success is likely, but only with continued monitoring and riparian restoration will the program reach its full potential.  相似文献   

6.
Species of Anoplodiscus Sonsino, 1890 were previously only known from host members of Sparidae. A new species, Anoplodiscus hutsonae n. sp. is proposed for museum specimens originally collected from species of Scolopsis Cuvier (Nemipteridae) off Heron Island and Lizard Island, Australia. Additionally, Anoplodiscus tai Ogawa, 1994 is synonymised with Anoplodiscus cirrusspiralis Roubal, Armitage & Rohde, 1983 due to a lack of support for differential characters, and Anoplodiscus richiardii is considered a species inquirenda. Anoplodiscus cirrusspiralis causes visible lesions on the skin and fins of its host, and may also contribute to poor food conversion rates in sparid aquaculture. Anoplodiscus cirrusspiralis has been recorded from cultured sparids in Australia, Japan, South Africa, and South Korea, and was implicated as a disease agent in fish from the former two countries. However, the discovery of A. cirrusspiralis on Chrysoblephus gibbiceps (Valenciennes), Ch. laticeps (Valenciennes) and Cymatoceps nasutus (Castelnau) in South Africa, ?Pagrus major (Temminck & Schlegel) in South Korea, and P. auratus (Forster) in Australia, New Zealand and Japan suggests that this species may have a wide distribution and low host-specificity within the Sparidae. In South Africa, A. cirrusspiralis was first encountered on a morbid C. nasutus and Ch. gibbiceps from two public aquaria in 2009 (Two Oceans Aquarium, Cape Town and uShaka Sea World, Durban, respectively). Additional material was collected from C. laticeps kept at an abalone farm in Hermanus that originated from Struisbaai on the South African south coast. Anoplodiscus cirrusspiralis is redescribed from the South African specimens. This is the first record of a member of Anoplodiscidae Tagliani, 1912 from Africa.  相似文献   

7.
The legume, Pueraria montana var. lobata (kudzu vine) is one of the worst plant invaders globally. Here we present the first study of P. montana in South Africa. We found only seven P. montana populations covering an estimated condensed area of 74 hectares during the height of the growing season. Based on a species distribution model, it appears that large parts of the globe are suitable, including parts of the eastern escarpment of South Africa (where most populations occur). South African populations of P. montana appear to have a similar ecology to populations in the USA: high growth rates, low seed germination, no natural long-distance dispersal, little herbivory and vigorous post-fire resprouting. In contrast to the USA, most South African populations do flower and flowers are capable of producing seed in the absence of pollinators. However, P. montana appears to have never been widely planted in South Africa, and the incursion was for many years restricted to a single introduction site. The comparison between the invasions of P. montana in the USA and South Africa highlights the often overriding importance of human-assisted dispersal and cultivation in creating widespread invasions, and should serve as a warning to people who have proposed to utilize the species in Africa.  相似文献   

8.
Eichhornia crassipes, commonly known as water hyacinth, is a free-floating perennial aquatic plant native to South America, which has been widely introduced on different continents, including Africa. E. crassipes is abundant in both the Congo (Africa) and Amazon (South America) River catchments. We performed a comparative analysis of the ostracod communities (Crustacea, Ostracoda) in the E. crassipes pleuston in the Amazon (South America) and Congo (Africa) River catchments. We also compared the ostracod communities from the invasive E. crassipes with those associated with stands of the native African macrophyte Vossia cuspidata. We recorded 25 species of ostracods associated with E. crassipes in the Amazon and 40 in the Congo River catchments, distributed over 31 ostracod species in E. crassipes and 27 in V. cuspidata. No South American invasive ostracod species were found in the Congolese pleuston. Diversity and richness of Congolese ostracod communities was higher in the invasive (Eichhornia) than in a native plant (Vossia). The highest diversity and abundance of ostracod communities were recorded in the Congo River. The result of principal coordinates analysis, used to evaluate the (dis)similarity between different catchments, showed significant differences in species composition of the communities. However, a dispersion homogeneity test (PERMDISP) showed no significant differences in the variability of the composition of species of ostracods (beta diversity) within Congo and Amazon River catchments. It appears that local ostracod faunas have adapted to exploit the opportunities presented by the floating invasive Eichhornia, which did not act as “Noah’s Ark” by introducing South American ostracods in the Congo River.  相似文献   

9.
Elaborate and expensive endeavours are underway worldwide to understand and manage biological invasions. However, the success of such efforts can be jeopardised due to taxonomic uncertainty. We highlight how unresolved native range taxonomy can complicate inferences in invasion ecology using the invasive tree Acacia dealbata in South Africa as an example. Acacia dealbata is thought to comprise two subspecies based on morphological characteristics and environmental requirements within its native range in Australia: ssp. dealbata and spp. subalpina. Biological control is the most promising option for managing invasive A. dealbata populations in South Africa, but it remains unknown which genetic/taxonomic entities are present in the country. Resolving this question is crucial for selecting appropriate biological control agents and for identifying areas with the highest invasion risk. We used species distribution models (SDMs) and phylogeographic approaches to address this issue. The ability of subspecies-specific and overall species SDMs to predict occurrences in South Africa was also explored. Furthermore, as non-overlapping bioclimatic niches between the two taxonomic entities may translate into evolutionary distinctiveness, we also tested genetic distances between the entities using DNA sequencing data and network analysis. Both approaches were unable to differentiate the two putative subspecies of A. dealbata. However, the SDM approach revealed a potential niche shift in the non-native range, and DNA sequencing results suggested repeated introductions of different native provenances into South Africa. Our findings provide important information for ongoing biological control attempts and highlight the importance of resolving taxonomic uncertainties in invasion ecology.  相似文献   

10.
11.
This review covers nearly 20 years of studies on the ecology, physiology and genetics of the Hymenoptera Cotesia sesamiae, an African parasitoid of Lepidoptera that reduces populations of common maize borers in East and South Africa. The first part of the review presents studies based on sampling of C. sesamiae from maize crops in Kenya. From this agrosystem including one host plant and three main host borer species, studies revealed two genetically differentiated populations of C. sesamiae species adapted to their local host community, and showed that their differentiation involved the joint evolution of virulence genes and sensory mechanisms of host acceptance, reinforced by reproductive incompatibility due to Wolbachia infection status and natural inbreeding. In the second part, we consider the larger ecosystem of wild Poales plant species hosting many Lepidoptera stem borer species that are potential hosts for C. sesamiae. The hypothesis of other host-adapted C. sesamiae populations was investigated based on a large sampling of stem borer larvae on various Poales across sub-Saharan Africa. The sampling provided information on the respective contribution of local hosts, biogeography and Wolbachia in the genetic structure of C. sesamiae populations. Molecular evolution analyses highlighted that several bracovirus genes were under positive selection, some of them being under different selection pressure in C. sesamiae populations adapted to different hosts. This suggests that C. sesamiae host races result from co-evolution acting at the local scale on different bracovirus genes. The third part considers the mechanisms driving specialization. C. sesamiae host races are more or less host-specialized. This character is crucial for efficient and environmentally-safe use of natural enemies for biological control of pests. One method to get an insight in the evolutionary stability of host-parasite associations is to characterize the phylogenetic relationships between the so-called host-races. Based on the construction of a phylogeny of C. sesamiae samples from various host- and plant species, we revealed three main lineages. Mechanisms of differentiation are discussed with regard to the geography and ecology of the samples. One of the lineage presented all the hallmarks of a distinct species, which has been morphologically described and is now studied in the perspective of being used as biological control agent against Sesamia nonagrioides Lefèbvre (Lepidoptera: Noctuidae), a major maize pest in West Africa and Mediterranean countries (see Benoist et al. 2017). The fourth part reviews past and present use of C. sesamiae in biological control, and points out the interest of such molecular ecology studies to reconcile biodiversity and food security stakes in future biological control.  相似文献   

12.
Africa hosts a rich assemblage of cycads: 66 Encephalartos species, Stangeria eriopus and Cycas thouarsii. Most Encephalartos and S. eriopus adults appear to be fire-tolerant, and certain Encephalartos species may be fire-dependent. Four Encephalartos species and S. eriopus are primarily insect-pollinated. African cycad populations typically have sex ratios of 1:1, with very small populations often male-biased. Coning is typically infrequent and erratic, with many species exhibiting mast-seeding. Viable seed production in Encephalartos populations tends to decline with decreasing population size, and seed predation by weevils is common. Seed dispersal in Encephalartos is usually localized, but vertebrates may facilitate dispersal over longer distances. Stem material of 25 Encephalartos species and S. eriopus is used for traditional medicine, primarily in South Africa. Two-thirds of Africa’s cycad species are threatened, with four species already Extinct in the Wild. The illegal acquisition of cycads from wild populations is the principle threat to their persistence. Further research is recommended on seed and fire ecology, population dynamics, and the outcomes of conservation interventions.  相似文献   

13.
14.
Several invasive Asteraceae have been targeted for biological control worldwide, with variable success. Senecio madagascariensis Poiret, which invades agricultural lands in Australia and Hawaii, is a recent target. Since several potential insect agents were recorded in the plant’s native range in South Africa, we assessed biocontrol efforts against asteraceous weeds to determine those most likely to deliver success. Some 108 insect species, from five orders and 23 families, were deployed against 38 weed taxa, mostly in the mainland USA, Canada, Australia and New Zealand. Coleoptera (mainly Curculionidae and Chrysomelidae), Diptera (Tephritidae) and Lepidoptera (Tortricidae) featured the most. Despite high establishment success (73% of releases across countries), only 37% of successful releases achieved meaningful impact. Although root-feeding and stem-feeding insects appeared to be the best candidates, neither insect family nor feeding guild significantly influenced the probability of success. This synthesis of the global contribution of different guilds of specialist herbivores to the management of invasive Asteraceae is guiding the selection of candidate agents for the biocontrol of S. madagascariensis in Australia.  相似文献   

15.
The phloem limited bacterium ‘Candidatus Liberibacter africanus’ is associated with citrus greening disease in South Africa. This bacterium has been identified solely from commercial citrus in Africa and the Mascarene islands, and its origin may lie within an indigenous rutaceous host from Africa. Recently, in determining whether alternative hosts of Laf exist amongst the indigenous rutaceous hosts of its triozid vector, Trioza erytreae, three novel subspecies of Laf were identified i.e. ‘Candidatus Liberibacter africanus subsp. clausenae’, ‘Candidatus Liberibacter africanus subsp. vepridis’ and ‘Candidatus Liberibacter africanus subsp. zanthoxyli’ in addition to the formerly identified ‘Candidatus Liberibacter africanus subsp. capensis’. The current study expands upon the range of indigenous rutaceous tree species tested for liberibacters closely related to Laf and its subspecies. A collection of 121 samples of Teclea and Oricia species were sampled from Oribi Gorge and Umtamvunu nature reserves in KwaZulu Natal. Total DNA was extracted and the presence of liberibacters from these samples determined using a generic liberibacter TaqMan real-time PCR assay. Liberibacters from positive samples were further characterised through amplification and sequencing of the 16S rRNA, outer-membrane protein (omp) and 50S ribosomal protein L10 (rplJ) genes. A single Teclea gerrardii specimen tested positive for a liberibacter and, through phylogenetic analyses of the three genes sequenced, was shown to be unique, albeit closely related to ‘Ca. L. africanus’ and ‘Ca. L. africanus subsp. zanthoxyli’. We propose that this newly identified liberibacter be named ‘Candidatus Liberibacter africanus subsp. tecleae’.  相似文献   

16.
We evaluated the efficacy of Hypogeococcus sp. (Hemiptera: Pseudococcidae) as a biological control agent of the cactaceous weed Cereus jamacaru De Candolle (Queen of the Night cactus) in South Africa. This weed has been described as being under complete biological control due to the action of Hypogeococcus sp., although no formal post-release evaluation had been conducted prior to this study. Biological control was associated with significant reductions in fruiting, plant survival and plant densities, while plant population age structures were negatively affected. Weed populations infected by Hypogeococcus sp. were typified by low or non-existent recruitment and are expected to diminish with time. Populations where Hypogeococcus sp. was absent displayed extensive recruitment, and are predicted to expand or self-replace, if left unchecked. These data indicate that Hypogeococcus sp. has a significant negative effect on C. jamacaru at the individual plant and population level, and given sufficient time provides complete biological control over this weed in South Africa.  相似文献   

17.
A review of the Oriental genus Cochinchinula Volk. (Coleoptera, Buprestidae, Polycestinae, Acmaeoderini) comprising three species is presented. The new species C. thailandica and C. bilyi spp. n. and the new genus Thaichinula gen. n. (type species T. ohmomoi sp. n.) from Thailand are described. A key to species of the genera Cochinchinula and Thaichinula is provided. The Nearctic genus Paracmaeoderoides Bellamy and Westcott is transferred from the subtribe Nothomorphina to the subtribe Acmaeoderoidina, and the South African genus Richtersveldia Bellamy is transferred from the subtribe Nothomorphina of Acmaeoderini to the tribe Ptosimini. The generic status is restored for another South African genus, Brachmaeodera Volkovitsh and Bellamy. The main evolutionary trends are discussed, and the taxonomic composition and classification of the tribe Acmaeoderini are clarified.  相似文献   

18.
19.
Ceratotheca triloba (Bernh.) Hook.f. commonly known as an African foxglove is an indigenous plant which occurs in most parts of South Africa. The species is commonly consumed as a leafy vegetable and utilized for its medicinal properties. Although the high nutritional value of the species and medicinal properties are well documented, information related to critical aspect of cultivation is currently limited. Therefore, this study aimed to evaluate the effect of vermicompost leachate (VCL) on growth, nutritional, phytochemical, and antioxidant levels in C. triloba at different growth stages under nutrient-deficient conditions. After in vitro germination, seedlings were grown in the greenhouse for 2 and 4 months under nitrogen (–N); phosphorus (–P); and potassium (–K) deficiency conditions, and were treated with VCL. Vermicompost leachate did not improve the growth of C. triloba plants under the nutrient-deficient conditions. Although –N-deficient plants with or without VCL caused a decline in growth parameters, they significantly enhanced phytochemicals in 2-month-old plants. In most cases, the application of VCL to –P- and –K-deficient plants improved the photosynthetic pigments, protein, and phenolic, as well as flavonoid accumulation. Harvesting time was also found to play a crucial role in the accumulation of evaluated parameters in nutrient-deprived plants. From these findings, it can be deduced that VCL has a potential to minimize the effect of nutrient deficiency especially under –P and –K deficiency in C. triloba plants.  相似文献   

20.
The economically important gymnosperm Gnetum L. is distributed in humid tropical forests of Africa. Its leaves are used as commercialized vegetables and greatly alleviate poverty for local people. Previously, the number of species recognized in Africa was uncertain, and Gnetum africanum Welw. and G. buchholzianum Engl. had been variously, and erroneously, applied to specimens. Based on recent morphological studies, species limits were clarified and two new African species, Gnetum interruptum E.H.Biye and G. latispicum E.H.Biye, were described. The purpose of this study was to determine species limits, to investigate potential infraspecific variation in wild African Gnetum species and to determine which features distinguish them in order to assess the validity of four species recognized by Biye et al. (Pl Syst Evol 300(2):263–272, 2014). Sixty-seven morphological characters were scored for a total of 175 (56 male and 119 female) specimens and analysed using cluster, principal components and principal coordinates analyses. Four distinct clusters of Gnetum specimens were recognized that correspond to the species now described as G. africanum, G. buchholzianum, G. interuptum and G. latispicum. A lack of geographical correlation with subclusters as well as their structure suggests there is no justification for recognizing infraspecific taxa. Characters that describe features of the spikes should be used to differentiate between and identify the species in Africa. In view of the high levels of utilization of two species and rarity of a third, it is urgent to assess the threat status of Gnetum species in Africa and to design appropriate conservation strategies to conserve these economically valuable plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号