首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Globally, non-native ungulates threaten native biodiversity, alter biotic and abiotic factors regulating ecological processes, and incur significant economic costs via herbivory, rooting, and trampling. Removal of non-native ungulates is an increasingly common and crucial first step in conserving and restoring native forests. However, removal is often controversial and there is currently little information on plant community responses to this management action. Here, we examine the response of native and non-native understory vegetation in paired sites inside and outside of exclosures across a 6.5–18.5 year chronosequence of feral pig (Sus scrofa) removal from canopy-intact Hawaiian tropical montane wet forest. Stem density and cover of native plants, species richness of ground-rooted native woody plants, and abundance of native plants of conservation interest were all significantly higher where feral pigs had been removed. Similarly, the area of exposed soil was substantially lower and cover of litter and bryophytes was greater with feral pig removal. Spatial patterns of recruitment were also strongly affected. Whereas epiphytic establishment was similar between treatments, the density of ground-rooted woody plants was four times higher with feral pig removal. Abundance of invasive non-native plants also increased at sites where they had established prior to feral pig removal. We found no patterns in any of the measured variables with time, suggesting that commonly occurring species recover within 6.5 years of feral pig removal. Recovery of species of conservation interest, however, was highly site specific and limited to areas that possessed remnant populations at the time of removal, indicating that some species take much longer (>18.5 years) to recover. Feral pig removal is the first and most crucial step for conservation of native forests in this area, but subsequent management should also include control of non-native invasive plants and outplanting native species of conservation interest that fail to recruit naturally.  相似文献   

2.
Nonnative ungulates can alter the structure and function of forest ecosystems. Feral pigs in particular pose a substantial threat to native plant communities throughout their global range. Hawaiian forests are exceptionally vulnerable to feral pig activity because native vegetation evolved in the absence of large mammalian herbivores. A common approach for conserving and restoring forests in Hawaii is fencing and removal of feral pigs. The extent of native plant community recovery and nonnative plant invasion following pig removal, however, is largely unknown. Our objective was to quantify changes in native and nonnative understory vegetation over a 16 yr period in adjacent fenced (pig‐free) vs. unfenced (pig‐present) Hawaiian montane wet forest. Native and nonnative understory vegetation responded strongly to feral pig removal. Density of native woody plants rooted in mineral soil increased sixfold in pig‐free sites over 16 yr, whereas establishment was almost exclusively restricted to epiphytes in pig‐present sites. Stem density of young tree ferns increased significantly (51.2%) in pig‐free, but not pig‐present sites. Herbaceous cover decreased over time in pig‐present sites (67.9%). In both treatments, number of species remained constant and native woody plant establishment was limited to commonly occurring species. The nonnative invasive shrub, Psidium cattleianum, responded positively to release from pig disturbance with a fivefold increase in density in pig‐free sites. These results suggest that while common native understory plants recover within 16 yr of pig removal, control of nonnative plants and outplanting of rarer native species are necessary components of sustainable conservation and restoration efforts in these forests.  相似文献   

3.
Soil inorganic nitrogen pools, net mineralization and net nitrification rates were compared during the dry season along a chronosequence of upland (terra firme) forest, 3-, 9- and 20-year-old pastures in the western Brazilian Amazon Basin state of Rondônia to investigate the influence of forest conversion to pasture on soil nitrogen cycles. Surface soil (0 to 10 cm) from forest had larger extractable inorganic nitrogen pools than pasture soils. In the forest, NO 3 pools equaled or exceeded NH 4 + pools, while pasture inorganic N pools consisted almost exclusively of NH 4 + . Rates of net N mineralization and net nitrification in seven -day laboratory incubations were higher in the seven - day forest than in the pastures. Net N mineralization rates did not differ significantly among different-aged pastures, but net nitrification rates were significantly lower in the 20-year-old pasture. Higher net N mineralization and net nitrification rates were measured in laboratory and in situ incubations of sieved soil, compared with in situ incubations of intact soil cores. Rates calculated in seven-day incubations were higher than determined by longer incubations. Sieving may increase N mineralization and/or decrease N immobilization compared with intact cores. We concluded that 7-day laboratory incubation of sieved soil was the most useful index for comparing N availability across the chronosequence of forest and pasture sites. High net nitrification rates in forest soils suggest a potential for NO 3 losses either through leaching or gaseous emissions.  相似文献   

4.
The short-term effect of a single fire, and the long-term effect of recent fire history and successional stage on total and mineral N concentration, net nitrogen mineralization, and nitrification were evaluated in soils from a steep semi-arid shrubland chronosequence in southeast Spain. A single fire significantly increased soil mineral N availability and net nitrification. Increasing fire frequency in the last few decades was. associated with a sharp decrease in surface soil organic matter and total N concentrations and pools, and with changes in the long-term N dynamic patterns. The surface-soil extractable NH4 +:NO3 ratio increased throughout the chronosequence. All net mineralized N in laboratory incubations from all sites was converted to nitrate, suggesting that allelochemic inhibition of net nitrification is probably not important in this system. Net nitrification in samples during incubation increased through the sere. The maximum rate of net nitrification (kmax) increased through the first three stages of the sere. A linear relationship was found between total soil N and N mineralization, and both kmax and net nitrification for the first three stages of the sere, suggesting that total N and ammonification are likely to be the control mechanisms of nitrification within the sere. The oldest site exhibited the lowest specific kmax and the highest, potential soil respiration rate suggesting that a lower N quality and increasing competition for ammonium might also limit nitrification at least in the long-unburned garrigue site.  相似文献   

5.
We studied how ungulates and a large variation in site conditions influenced grassland nitrogen (N) dynamics in Yellowstone National Park. In contrast to most grassland N studies that have examined one or two soil N processes, we investigated four rates, net N mineralization, nitrification, denitrification, and inorganic N leaching, at seven paired sites inside and outside long-term (33+ year) exclosures. Our focus was how N fluxes were related to one another among highly variable grasslands and how grazers influenced those relationships. In addition, we examined variation in soil δ15N among grasslands and the relationships between soil 15N abundance and N processes. Previously, ungulates were reported to facilitate net N mineralization across variable Yellowstone grasslands and denitrification at mesic sites. In this study, we found that herbivores also promoted nitrification among diverse grasslands. Furthermore, net N mineralization, nitrification, and denitrification (kg N ha–1 year–1, each variable) were postively and linearly related to one another among all grasslands (grazed and fenced), and grazers reduced the nitrification/net N mineralization and denitrification/net N mineralization ratios, indicating that ungulates inhibited the proportion of available NH4 + that was nitrified and denitrified. There was no relationship between net N mineralization or nitrification with leaching (indexed by inorganic N adsorbed to resin buried at the bottom of rooting zones) and leaching was unaffected by grazers. Soil δ15N was positively and linearly related to in situ net N mineralization and nitrification in ungrazed grasslands; however, there was no relationship between isotopic composition of N and those rates among grazed grasslands. The results suggested that grazers simultaneously increased N availability (stimulated net N mineralization and nitrification per unit area) and N conservation (reduced N loss from the soil per unit net N mineralization) in Yellowstone grasslands. Grazers promoted N retention by stimulating microbial productivity, probably caused by herbivores promoting labile soil C. Process-level evidence for N retention by grazers was supported by soil δ15N data. Grazed grassland with high rates of N cycling had substantially lower soil δ15N relative to values expected for ungrazed grassland with comparable net N mineralization and nitrification rates. These soil 15N results suggest that ungulates inhibited N loss at those sites. Such documented evidence for consumer control of N availability to plants, microbial productivity, and N retention in Yellowstone Park is further testimony for the widespread regulation of grassland processes by large herbivores. Received: 5 May 1999 / Accepted: 1 November 1999  相似文献   

6.
Ungulate herbivory can have profound effects on ecosystem processes by altering organic inputs of leaves and roots as well as changing soil physical and chemical properties. These effects may be especially important when the herbivore is an introduced species. Utilizing large mammal exclosures to prevent access by introduced elk at multiple sites along a fire chronosequence, we examined the effects of elk herbivory and fire on soil microbial activity and nutrient availability. Using time since fire as a co-variate and herbivore exclosures, paired with areas outside of the exclosures, we hypothesized that reductions in plant biomass due to herbivory would reduce organic inputs to soils and impact soil microbial activities and nutrient storage. We found three major patterns: (1) when elk were excluded, surface mineral soils had higher soil organic carbon (C), total nitrogen (N), microbial N pools, and increased extra-cellular enzyme activity of a C-acquiring enzyme across a gradient of time since fire. (2) When introduced elk are present, the activity of some extracellular enzymes as well as NO3 availability are enhanced in the soil but the post-fire patterns described above with respect to nutrient accrual over time are delayed. (3) Herbivory by an introduced ungulate upsets the trajectory of ecosystem “recovery” after wildfire and delays soil C and N dynamics by an estimated 14.5–21 years, respectively. These results suggest that introduced, browsing herbivores significantly decelerate ecosystem processes but herbivory by exotics may also result in unpredictability in specific soil responses.  相似文献   

7.
Nutrient biogeochemistry associated with the early stages of soil development in deltaic floodplains has not been well defined. Such a model should follow classic patterns of soil nutrient pools described for alluvial ecosystems that are dominated by mineral matter high in phosphorus and low in carbon and nitrogen. A contrast with classic models of soil development is the anthropogenically enriched high nitrate conditions due to agricultural fertilization in upstream watersheds. Here we determine if short-term patterns of soil chemistry and dissolved inorganic nutrient fluxes along the emerging Wax Lake delta (WLD) chronosequence are consistent with conceptual models of long-term nutrient availability described for other ecosystems. We add a low nitrate treatment more typical of historic delta development to evaluate the role of nitrate enrichment in determining the net dinitrogen (N2) flux. Throughout the 35-year chronosequence, soil nitrogen and organic matter content significantly increased by an order of magnitude, whereas phosphorus exhibited a less pronounced increase. Under ambient nitrate concentrations (>60 μM), mean net N2 fluxes (157.5 μmol N m?2 h?1) indicated greater rates of gross denitrification than gross nitrogen fixation; however, under low nitrate concentrations (<2 μM), soils switched from net denitrification to net nitrogen fixation (?74.5 μmol N m?2 h?1). As soils in the WLD aged, the subsequent increase in organic matter stimulated net N2, oxygen, nitrate, and nitrite fluxes producing greater fluxes in more mature soils. In conclusion, soil nitrogen and carbon accumulation along an emerging delta chronosequence largely coincide with classic patterns of soil development described for alluvial floodplains, and substrate age together with ambient nitrogen availability can be used to predict net N2 fluxes during early delta evolution.  相似文献   

8.
Abstract: Feral pigs (Sus scrofa) have caused considerable damage where they have been introduced around the world. At Pinnacles National Monument, California, USA, managers were concerned that feral pigs were damaging wetland habitats, reducing oak regeneration, competing with native wildlife, and dispersing nonnative plant species through soil disturbance. To address these threats the National Park Service constructed an exclosure around 57 km2 of monument land and through cooperation with the Institute for Wildlife Studies eradicated all feral pigs within the area. Trapping, ground-hunting, hunting dogs, and Judas techniques were used to remove feral pigs. Trapping techniques removed most pigs, but a combination of techniques was required to cause eradication. A series of bait sites and transects across the monument helped focus removal efforts and facilitated detection of the last remaining feral pigs in the exclosure. Consistent funding and cooperation from the National Park Service allowed for a seamless and comprehensive program that provided intensive removal of feral pigs. The successful eradication of feral pigs at Pinnacles National Monument should encourage managers in other areas to implement future control or eradication programs.  相似文献   

9.
Wildfires have shaped the biogeography of south Chilean Araucaria–Nothofagus rainforest vegetation patterns, but their impact on soil properties and associated nutrient cycling remains unclear. Nitrogen (N) availability shows a site‐specific response to wildfire events indicating the need for an increased understanding of underlying mechanisms that drive changes in soil N cycling. In this study, we selected unburned and burned sites in a large area of the National Park Tolhuaca that was affected by a stand‐replacing wildfire in February 2002. We conducted net N cycling flux measurements (net ammonification, net nitrification and net N mineralization assays) on soils sampled 3 years after fire. In addition, samples were physically fractionated and natural abundance of C and N, and 13C‐NMR analyses were performed. Results indicated that standing inorganic N pools were greater in the burned soil, but that no main differences in net N cycling fluxes were observed between unburned and burned sites. In both sites, net ammonification and net nitrification fluxes were low or negative, indicating N immobilization. Multiple linear regression analyses indicated that soil N cycling could largely be explained by two parameters: light fraction (LF) soil organic matter N content and aromatic Chemical Oxidation Resistant Carbon (CORECarom), a relative measure for char. The LF fraction, a strong NH4+ sink, decreased as a result of fire, while CORECarom increased in the burned soil profile and stimulated NO3 production. The absence of increased total net nitrification might relate to a decrease in heterotrophic nitrification after wildfire. We conclude that (i) wildfire induced a shift in N transformation pathways, but not in total net N mineralization, and (ii) stable isotope measurements are a useful tool to assess post‐fire soil organic matter dynamics.  相似文献   

10.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

11.
Napiergrass (Pennisetum purpureum Schum.) is a high-yielding perennial biomass crop that is well adapted to the Southeast USA where poultry litter is readily available. This research was conducted to compare biomass production and nutrient utilization of napiergrass fertilized with either poultry litter or inorganic fertilizer. Each spring, approximately 100 kg ha?1 of N, 40 kg ha?1 P, and 90 kg ha?1 K were applied as poultry litter or equivalent inorganic fertilizer. Biomass was harvested each winter after senescence. For the first 2 years, dry matter yield did not differ among treatments, but in the third and fourth years, yields declined in all treatments and were lowest in the unfertilized treatment. Biomass N concentration and N removal were greatest in the inorganic treatment. In general, N removal exceeded the amount applied, suggesting that higher application rates may be necessary to maintain yields. Biomass P concentration and total P uptake were greatest in the litter fertilized treatment, demonstrating that napiergrass can remove some of the excess P from applied litter. Soil cores were taken periodically to assess changes in soil properties. After 2 years of production, soil pH in the surface layer (0–15 cm) was lower in the inorganic treatment than in the other treatments. After 4 years, total soil C had increased by an average of 3,180 kg ha?1 though fertilizer treatments did not differ. Yield declined in all treatments after 4 years and N supplementation is recommended for production in upland fields.  相似文献   

12.
Canada bluejoint grass [Calamagrostis canadensis (Michx.) Beauv., referred to as bluejoint below] is a competitive understory species widely distributed in the boreal region in North America and builds up a thick litter layer that alters the soil surface microclimate in heavily infested sites. This study examined the effects of understory removal, N fertilization, and litter layer removal on litter decomposition, soil microbial biomass N (MBN), and net N mineralization and nitrification rates in LFH (the sum of organic horizons of litter, partially decomposed litter and humus on the soil surface) and mineral soil (0–10 cm) in a 13-year-old white spruce [Picea glauca (Moench.) Voss] plantation infested with bluejoint in Alberta, Canada. Removal of the understory vegetation and the litter layer together significantly increased soil temperature at 10 cm below the mineral soil surface by 1.7 and 1.3°C in summer 2003 and 2004, respectively, resulting in increased net N mineralization (by 1.09 and 0.14 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004) and net nitrification rates (by 0.10 and 0.20 mg N kg−1 day−1 in LFH and mineral soil, respectively, in 2004). When the understory vegetation was intact, nitrification might have been limited by NH4 + availability due to competition for N from bluejoint and other understory species. Litter layer removal increased litter decomposition rate (percentage mass loss per month) from 2.6 to 3.0% after 15 months of incubation. Nitrogen fertilization did not show consistent effects on soil MBN, but increased net N mineralization and nitrification rates as well as available N concentrations in the soil. Clearly, understory removal combined with N fertilization was most effective in increasing rates of litter decomposition, net N mineralization and nitrification, and soil N availability. The management of understory vegetation dominated by bluejoint in the boreal region should consider the strong effects of understory competition and the accumulated litter layer on soil N cycling and the implications for forest management.  相似文献   

13.
We assessed the potential impact of global warming resulting from a doubling of preindustrial atmospheric CO2 on soil net N transformations by transferring intact soil cores (0–15 cm) from a high-elevation old-growth forest to a forest about 800 m lower in elevation in the central Oregon Cascade Mountains, USA. The lower elevation site had mean annual air and soil (10-cm mineral soil depth) temperatures about 2.4 and 3.9 °C higher than the high-elevation site, respectively. Annual rates of soil net N mineralization and nitrification more than doubled in soil transferred to the low-elevation site (17.2–36.0 kg N ha–1 and 5.0–10.7 kg NO3–N ha–1, respectively). Leaching of inorganic N from the surface soil (in the absence of plant uptake) also increased. The reciprocal treatment (transferring soil cores from the low- to the high-elevation site) resulted in decreases of about 70, 80, and 65% in annual rates of net N mineralization, nitrification, and inorganic N leaching, respectively. Laboratory incubations of soils under conditions of similar temperature and soil water potential suggest that the quality of soil organic matter is higher at the high-elevation site. Similar in situ rates of soil net N transformations between the two sites occurred because the lower temperature counteracts the effects of greater substrate quantity and quality at the high elevation site. Our results support the hypothesis that high-elevation, old-growth forest soils in the central Cascades have higher C and N storage than their low-elevation analogues primarily because low temperatures limit net C and N mineralization rates at higher elevations.  相似文献   

14.
Glacier foreland moraines provide an ideal model to examine the patterns of ecosystem development and the evolution of nitrogen and phosphorous limitation over successional time. In this paper, we focus on a 400‐year soil chronosequence in the glacier forelands of Santa Inés Island in the Magellan Strait, southern Chile by examining forest development on phosphorus (P)‐poor substrates in a uniquely unpolluted region of the world. Results show a steady increase in tree basal area and a humped trend in tree species richness over four centuries of stand development. The increase in basal area suggests that the late successional tree species were more efficient nutrient users than earlier successional ones. Total contents of carbon (C) and nitrogen (N) in soils increased during the chronosequence, reaching an asymptote in late succession. The net increases in soil C : N, C : P and N : P ratios observed over successional time suggest that nutrient limitation is maximal in 400‐year‐old substrates. Foliar C : N and C : P ratios also increased over time to reach an asymptote in old‐growth stages, following soil stoichiometric relationships; however the foliar N‐to‐P ratio remained constant throughout the chronosequence. Biological N fixation was greater in early postglacial succession, associated with the presence of the symbiotic N‐fixer Gunnera magellanica. Declining trends of δ15N in surface soils through the 400‐year chronosequence are evidence of decreasing N losses in old‐growth forests. In synthesis, glacier foreland chronosequences at this high South American latitude provide evidence for increasing efficiency of N and P use in the ecosystem, with the replacement of shade‐intolerant pioneers by more efficient, shade‐tolerant tree species. This pattern of ecosystem development produces a constant foliar N : P ratio, regardless of variation in soil N‐to‐P ratio over four centuries.  相似文献   

15.
Habitat invasibility has been found to increase dramatically following the alteration of ecosystem properties by a nonnative species. Robinia pseudoacacia, black locust, is a nitrogen-fixing, clonal tree species that aggressively invades open habitats and expands outside of plantations worldwide. Robinia pseudoacacia stands in Cape Cod National Seashore were particularly susceptible to a hurricane in 1991 that caused widespread blowdown and a dramatic reduction in Robinia in some stands. We used this change to investigate the lasting ecological effects of this nonnative species on this upland coastal ecosystem. We established replicate clusters of 20 × 20 m field plots within 50 m of each other that contained native pitch pine (Pinus rigida) and oak (Quercus velutina, Q. alba) forest, living Robinia stands, and stands in which Robinia was eliminated or reduced to less than 5 % cover by the hurricane. Net nitrification and extractable soil nitrate concentration differed significantly between stand types, in the order Robinia > former Robinia > pine-oak. Nonnative species cover differed significantly between each stand type, in the order Robinia > former Robinia > pine-oak. Invasion of Robinia pseudoacacia increased soil net nitrification and nitrogen availability and precipitated a change in forest species composition that favored nonnative species. The presence of elevated soil nitrogen and nonnative species persisted at least 14 years after the removal of the original invading tree species, suggesting that the invasion of a tree species left a legacy of altered soil biogeochemistry, a higher number of nonnative species, and greater nonnative species cover.  相似文献   

16.
Uncertainty about controls on long-term carbon (C) and nitrogen (N) balance, turnover, and isotopic composition currently limits our ability to predict ecosystem response to disturbance and landscape change. We used a two-century, postglacial chronosequence in Glacier Bay, Alaska, to explore the influence of C and N dynamics on soil and leaf stable isotopes. C dynamics were closely linked to soil hydrology, with increasing soil water retention during ecosystem development resulting in a linear decrease in foliar and soil δ13C, independent of shifts in vegetation cover and despite constant precipitation across sites. N dynamics responded to interactions among soil development, vegetation type, microbial activity, and topography. Contrary to the predictions of nutrient retention theory, potential nitrification and denitrification were high, relative to inorganic N stocks, from the beginning of the chronosequence, and gaseous and hydrological N losses were highest at mid-successional sites, 140–165 years since deglaciation. Though leaching of dissolved N is considered the predominant pathway of N loss at high latitudes, we found that gaseous N loss was more tightly correlated with δ15N enrichment. These results suggest that δ13C in leaves and soil can depend as much on soil development and associated water availability as on climate and that N availability and export depend on interactions between physical and biological state factors.  相似文献   

17.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:4,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

18.
Individual trees are known to influence soil chemical properties, creating spatial patterns that vary with distance from the stem. The influence of trees on soil chemical properties is commonly viewed as the agronomic basis for low-input agroforestry and shifting cultivation practices, and as an important source of spatial heterogeneity in forest soils. Few studies, however, have examined the persistence of the effects of trees on soil after the pathways responsible for the effects are removed. Here, we present evidence from a Mexican dry forest indicating that stem-related patterns of soil nutrients do persist following slash-and-burn removal of trees and two years of cropping. Pre-disturbance concentrations of resin extractable phosphorus (P), bicarbonate extractable P, NaOH extractable P, total P, total nitrogen (N) and carbon (C), KCl extractable nitrate (NO3 -), and net N mineralization and nitrification rates were higher in stem than dripline soils under two canopy dominant species of large-stemmed trees with contrasting morphologies and phenologies (Caesalpinia eriostachys Benth. and Forchhammeria pallida Liebm.). These stem effects persisted through slash burning and a first growing season for labile inorganic and organic P, NaOH inorganic P, and plant-available P, and through a second growing season for labile organic P, NaOH organic P, and plant-available P. While stem effects for extractable NO3 -, net nitrification rates, total N and C disappeared after felling and slash burning, these stem effects returned after the first growing season. These results support the view that tree-influenced patterns of soil nutrients do persist after tree death, and that trees contribute to the long-term spatial heterogeneity of forest soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Interactions of water,mulch and nitrogen on sorghum in Niger   总被引:17,自引:0,他引:17  
Zaongo  C.G.L.  Wendt  C.W.  Lascano  R.J.  Juo  A.S.R. 《Plant and Soil》1997,190(1):119-126
We tested the hypothesis that plants only stimulate net mineralization of N when intense competition for N exists between plants and heterotrophs. Nitrogen mineralization in the soil used was insensitive to the range of moisture fluctuations that were inevitable during plant growth. Pots were planted to wheat (Triticum aestivum L.) or left unplanted and received no straw, straw added in one central layer, or straw added uniformly through the whole soil volume. Through the addition of15 N-labelled nitrate, initial soil inorganic N was increased to 17 g g–1 in unplanted treatments and to 17 g g–1 and 72 g g–1 in planted treatments. Straw addition increased microbial immobilization of labelled N (soil inorganic N at planting), but did not reduce net mineralization of unlabelled soil N (soil organic N at planting), indicating that straw decomposers immobilized N early in the growth period. Plant growth did not reduce immobilization of N by straw decomposers. Net mineralization of N was not affected by plant growth at the low rate of N addition, but was reduced at the high rate of N addition. We conclude that the influence of wheat growth on net mineralization of N depends on soil N availability, with reductions in net mineralization at high N levels due to increased immobilization.  相似文献   

20.
Urbanization represents the extreme case of human influence on an ecosystem. Biogeochemical cycling of nitrogen (N) in cities is very different from that of non-urban landscapes due to the large input of reactive forms of N and the heterogeneous distribution of various land uses that alters landscape connections. To quantify the likely effects of human activities on soil N and other soil properties in urban ecosystems, we conducted a probability-based study to sample 203 plots randomly distributed over the 6,400 km2 Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) area, which encompasses metropolitan Phoenix with its 3.5 million inhabitants. Soil inorganic N concentrations were significantly higher in urban residential, non-residential, agricultural, transportation, and mixed sites than in the desert sites. Soil water content and organic matter were both significantly higher under urban and agricultural land uses, whereas bulk density was lower compared to undeveloped desert. We calculated that farming and urbanization on average had caused an accumulation of 7.23 g m−2 in soil inorganic N across the CAP study area. Average soil inorganic N of the sampled desert sites (3.23 g m−2) was much higher than the natural background level reported in the literature. Laboratory incubation studies showed that many urban soils exhibited net immobilization of inorganic N, whereas desert and agricultural soils showed small, but positive, net N mineralization. The large accumulation of inorganic N in soils (mostly as nitrate) was highly unusual in terrestrial ecosystems, suggesting that in this arid urban ecosystem, N is likely no longer the primary limiting resource affecting plants, but instead poses a threat to surface and groundwater contamination, and influences other N cycling processes such as denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号