首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A 2,175-bp modified gene (cry11Ba-S1) encoding Cry11Ba from Bacillus thuringiensis subsp. jegathesan was designed and the recombinant protein was expressed as a fusion protein with glutathione S-transferase in Escherichia coli. The recombinant Cry11Ba was highly toxic against Culex pipiens mosquito larvae, being nine and 17 times more toxic than mosquitocidal Cry4Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis, respectively. Interestingly, a further increase in the toxicity of the recombinant Cry11Ba was achieved by mixing with Cry4Aa, but not with Cry11Aa. These findings suggested that Cry11Ba worked synergistically with Cry4Aa, but not with Cry11Aa, in exhibiting toxicity against C. pipiens larvae. On the other hand, the amount of Cry toxin bound to brush border membrane vesicles (BBMVs) did not significantly change between individual toxins and the toxin mixtures, suggesting that the increase in toxins binding to BBMVs was not a reason for the observed synergistic effect. It is generally accepted that synergism of toxins is a potentially powerful tool for enhancing insecticidal activity and managing Cry toxin resistance in mosquitoes. The mixture of Cry4Aa and Cry11Ba in order to increase toxicity would be very valuable in terms of mosquito control.  相似文献   

2.
An exposure bioassay was established for green lacewing Chrysopa pallens (Rambur) (Neuroptera: Chrysopidae) adults using a suitable artificial diet and honey–water solution (20%) to assess the toxicity of trypsinized Cry1Fa and Vip3Aa. Lethal and sub-lethal life table parameters were unaffected after C. pallens adults were given honey–water solutions containing Cry1Fa and Vip3Aa (50 µg/ml) and an artificial diet. In contrast, life table parameters of C. pallens adults were significantly affected when boric acid was mixed with the honey–water solution as a positive control. The uptake, temporal stability and bioactivity of Cry1Fa and Vip3Aa before and after C. pallens access to honey–water were confirmed using double antibody sandwich enzyme-linked immunosorbent assays and a bioactivity verification bioassay. The results prove that trypsinized Cry1Fa and Vip3Aa are safe for C. pallens adults, thus it is speculated that transgenic crops expressing Cry1Fa and Vip3Aa have no detrimental effects on lacewings and are compatible with biological control programs. This study describes a robust experimental design for evaluating the potential toxicity of alkaline gut-activated Bacillus thuringiensis (Bt) proteins on C. pallens adults which can be used to determine the potential toxicity of other Bt proteins on this species.  相似文献   

3.
Biosafety of a genetically modified crop is required to be assessed prior to its commercialization. For this, a suitable artificial diet was developed and used to establish a dietary exposure test for assessing the toxicity of midgut-active Bt insecticidal proteins on Chrysopa pallens (Rambur). Subsequently, this dietary exposure test was used to evaluate the toxicity of the proteins Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa on C. pallens larvae. Temporal stability, bioactivity, and the intake of the insecticidal proteins were confirmed by enzyme-linked immunosorbent assay and a sensitive-insect bioassay. The life history characteristics, such as survival, pupation, adult emergence, 7-day larval weight, larval developmental time, and emerged male and female fresh weights remained unaffected, when C. pallens were fed the pure artificial diet (negative control) and the artificial diets containing 200 μg/g of each purified protein: Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, or Vip3Aa. On the contrary, all of the life history characteristics of C. pallens larvae were adversely affected when fed artificial diet containing boric acid (positive control). The results demonstrate that diets containing the tested concentrations of Cry1Ab, Cry1Ac, Cry1Ah, Cry1Ca, Cry1F, Cry2Aa, Cry2Ab, and Vip3Aa have null effects on C. pallens larvae. The outcome indicates that genetically modified crops expressing the tested Bt proteins are safe for the lacewing, C. pallens.  相似文献   

4.
Wide planting of transgenic Bt cotton in China since 1997 to control cotton bollworm (Helicoverpa armigera) has increased yields and decreased insecticide use, but the evolution of resistance to Bt cotton by H. armigera remains a challenge. Toward developing a new generation of insect-resistant transgenic crops, a chimeric protein of Vip3Aa1 and Vip3Ac1, named Vip3AcAa, having a broader insecticidal spectrum, was specifically created previously in our laboratory. In this study, we investigated cross resistance and interactions between Vip3AcAa and Cry1Ac with three H. armigera strains, one that is susceptible and two that are Cry1Ac-resistant, to determine if Vip3AcAa is a good candidate for development the pyramid cotton with Cry1Ac toxin. Our results showed that evolution of insect resistance to Cry1Ac toxin did not influence the sensitivity of Cry1Ac-resistant strains to Vip3AcAa. For the strains examined, observed mortality was equivalent to the expected mortality for all the combinations of Vip3AcAa and Cry1Ac tested, reflecting independent activity between these two toxins. When this chimeric vip3AcAa gene and the cry1Ac gene were introduced into cotton, mortality rates of Cry1Ac resistant H. armigera larvae strains that fed on this new cotton increased significantly compared with larvae fed on non-Bt cotton and cotton producing only Cry1Ac. These results suggest that the Vip3AcAa protein is an excellent option for a “pyramid” strategy for pest resistance management in China.  相似文献   

5.
A Cry46Ab toxin derived from Bacillus thuringiensis strain TK-E6 shows mosquitocidal activity against Culex pipiens pallens Coquillett (Diptera: Culicidae) larvae as well as preferential cytotoxicity against human cancer cells. In B. thuringiensis cells, Cry46Ab is produced and accumulates as a protein crystal that is processed into the active 29-kDa toxin upon solubilization in the alkaline environment of the insect midgut. The Cry46Ab protoxin is 30 kDa, and is therefore thought to require an accessory protein such as P20 and/or ORF2 for efficient crystal formation. In the present study, the potency of the 4AaCter-tag was investigated for the production of alkali-soluble inclusion bodies of recombinant Cry46Ab in Escherichia coli. The 4AaCter-tag is a polypeptide derived from the C-terminal region of the B. thuringiensis Cry4Aa toxin and facilitates the formation of alkali-soluble protein inclusion bodies in E. coli. Fusion with the 4AaCter-tag enhanced both Cry46Ab production and the formation of Cry46Ab inclusion bodies. In addition, upon optimization of protein expression procedures, the Cry46Ab–4AaCter inclusion bodies showed mosquitocidal activity and stability in aqueous environments comparable to Cry46Ab without the 4AaCter-tag. Our study suggests that use of the 4AaCter-tag is a straightforward approach for preparing formulations of smaller-sized Cry toxins such as Cry46Ab in E. coli.  相似文献   

6.
The potential of insecticidal Vip3Aa toxin peptide of Bacillus thuringiensis (Bt) as a resource for development of lepidopteran insect resistant transgenic crop plants has not yet been fully fathomed. The single mode of protection offered by the insecticidal Vip3Aa toxin against a broad spectrum of lepidopteran insect pests that invade crop field as secondary insect pests, carry definitive significance. However, lack of diversity amongst insecticidal Vip3A toxin towards toxicity for lepidopteran insects is often considered as disadvantage. In order to bring in improvement at this front, search for diversity and protein engineering of the toxin molecule for creation of diversity require to be undertaken in future. In that context, identification of the bioactive core component of Vip3BR toxin peptide of Bt an analogue of Vip3Aa toxin has been accomplished. The core component was found to contain enhanced potency of the insecticidal property 2–3 folds more than the native toxin against four major crop pests.  相似文献   

7.
Vegetative insecticidal proteins were produced by some Bacillus thuringiensis strains and were successfully used in biological control against different agricultural pests such as Lepidoptera. To assess the safety of Vip3Aa16 toxins in mammalian organisms, we evaluated their toxicity using histological, hematological, and oxidative stress parameters on albino Swiss mice. The animals were orally treated with 2500, 5000, 7500 milligrams (mg) of the toxin/kilogram (kg) of body weight for 14 days. Then samples of blood, kidney and hepatic tissues were collected at the end of the treatment. Hematological parameters were monitored by RBC, WBC, hemoglobin, hematocrit, MCV, MCH, and MCHC. Liver and kidney MDA, SOD, vitamin C and H2O2 were analyzed to assess oxidative damage. Hepatotoxicity was monitored by analysis of the plasma enzymes ALT and AST and bilirubin levels. Renal toxicity was tested by urea, uric acid and creatinine evaluation. The histopathology of kidney and liver tissues was also investigated. The results of the toxicological study revealed that the Vip3AaA16 has no lethal effect since no mortality was observed at any dose. Moreover, body weight, hematological, histological, biochemical and oxidative findings showed no significant differences between treated and control groups. All these findings confirmed that this toxin is highly safe and doesn’t represent any risk on animal health and subsequently, Vip3Aa16 toxin can be safely used in biological programs to control Lepidopteran pests attacking crops around the world.  相似文献   

8.
Attempts have been made to express or to merge different Cry proteins in order to enhance toxic effects against various insects. Cry1A proteins of Bacillus thuringiensis form a typical bipyramidal parasporal crystal and their protoxins contain a highly conserved C-terminal region. A chimerical gene, called cry(4Ba-1Ac), formed by a fusion of the N-terminus part of cry4Ba and the C-terminus part of cry1Ac, was constructed. Its transformation to an acrystalliferous B. thuringiensis strain showed that it was expressed as a chimerical protein of 116 kDa, assembled in spherical to amorphous parasporal crystals. The chimerical gene cry(4Ba-1Ac) was introduced in a B. thuringiensis kurstaki strain. In the generated crystals of the recombinant strain, the presence of Cry(4Ba-1Ac) was evidenced by MALDI-TOF. The recombinant strain showed an important increase of the toxicity against Culex pipiens larvae (LC50 = 0.84 mg l?1 ± 0.08) compared to the wild type strain through the synergistic activity of Cry2Aa with Cry(4Ba-1Ac). The enhancement of toxicity of B. thuringiensis kurstaki expressing Cry(4Ba-1Ac) compared to that expressing the native toxin Cry4Ba, might be related to its a typical crystallization properties. The developed fusion protein could serve as a potent toxin against different pests of mosquitoes and major crop plants.  相似文献   

9.
The expression of insecticidal genes must be induced at appropriate time and in sufficient amount to confer protection against targeted pests. However, the increased scientific reports of resistance development in insect pest against insecticidal delta-endotoxins, produced by Bacillus thuringiensis, provide impetus for the development of alternative insect management strategies. The present study was conducted to investigate the importance of targeted expression of a hybrid insecticidal gene (SN19) in potatoes. For this purpose, two plant expression vectors were constructed by cloning hybrid SN19 gene (cry1Ba-domain I–III and cry1Ia-domain II) under the control of a wound-inducible promoter isolated from Asparagus officinalis (AoPR1) and CaMV 35S promoter, and were transferred to Agrobacterium tumefaciens strain EHA 105. Four potato genotypes (Marabel, Innovator, Tokat 10/1 and Tokat 6/24) were transformed with EHA 105 strain harboring pTF101.1 35S–SN19 and pTF101.1 AoPR1–SN19 constructs. Phosphinothricin (PPT) was used at concentration of 1 mg/l for selection of primary transformants. PCR results showed the presence of both introduced SN19 and bar genes in 43 plants out of total 154 putative transgenics. Expression of SN19 protein in primary transformants was confirmed by Western blot assays. The mechanical wounding of transgenic plants exhibited more accumulated levels of SN19 proteins during post wounding period. Leaf biotoxicity assays with Colorado potato beetle (Coleoptera) and tomato leafminer (Lepidoptera) exhibited 100% mortality of the pests in primary transformants. Based on our mortality results with both constructs, we concluded that the potato transgenic lines exhibited targeted expression of insecticidal gene under the control of AoPR1 promoter upon insect wounding with eliminated toxicity of Cry protein and hence can be further used effectively in potato breeding programme.  相似文献   

10.
Second generation Bt crops (insect resistant crops carrying Bacillus thuringiensis genes) combine more than one gene that codes for insecticidal proteins in the same plant to provide better control of agricultural pests. Some of the new combinations involve co-expression of cry and vip genes. Because Cry and Vip proteins have different midgut targets and possibly different mechanisms of toxicity, it is important to evaluate possible synergistic or antagonistic interactions between these two classes of toxins. Three members of the Cry1 class of proteins and three from the Vip3A class were tested against Heliothis virescens for possible interactions. At the level of LC50, Cry1Ac was the most active protein, whereas the rest of proteins tested were similarly active. However, at the level of LC90, Cry1Aa and Cry1Ca were the least active proteins, and Cry1Ac and Vip3A proteins were not significantly different. Under the experimental conditions used in this study, we found an antagonistic effect of Cry1Ca with the three Vip3A proteins. The interaction between Cry1Ca and Vip3Aa was also tested on two other species of Lepidoptera. Whereas antagonism was observed in Spodoptera frugiperda, synergism was found in Diatraea saccharalis. In all cases, the interaction between Vip3A and Cry1 proteins was more evident at the LC90 level than at the LC50 level. The fact that the same combination of proteins may result in a synergistic or an antagonistic interaction may be an indication that there are different types of interactions within the host, depending on the insect species tested.  相似文献   

11.
The citrus fruit borer, Ecdytolopha aurantiana (Lima, 1927) (Lepidoptera: Tortricidae), is responsible for major losses to the citrus industry because it causes rot and drop of fruits. The current study aimed to select and characterize Bacillus thuringiensis (Berliner, 1911) strains toxic to E. aurantiana. For this purpose, 47 B. thuringiensis strains were evaluated in selective bioassays using first instar larvae of E. aurantiana. The lethal concentration (LC50) of the most toxic strains was estimated, and the strains were characterized by morphological, biochemical, and molecular methods. Of the 47 strains tested, 10 caused mortality above 85% and showed mean lethal concentrations between 1.05E+7 and 1.54E+8 spores mL?1. The lowest LC50 values were obtained for the HD-1 standard strain and the BR145, BR83, BR52, and BR09 strains. The protein profile showed the presence of Cry proteins of 60, 65, 70, 80, and 130 kDa. The molecular characterization showed the presence of cry1, cry2, cry3, and cry11 genes. The morphological analysis identified three different crystalline inclusions: bipyramidal, round, and cuboidal. The cry1 and cry2 genes were the most frequent among the B. thuringiensis strains evaluated and encode Cry proteins toxic to insects of the order Lepidoptera, which agree with the toxicity results obtained by the selective bioassays against E. aurantiana. The results showed four different B. thuringiensis strains toxic to E. aurantiana at the same level as the HD-1 standard strain, and these strains have biotechnological potential for E. aurantiana control through the production of transgenic plants or the formulation of biopesticides.  相似文献   

12.
Characterization of new Bacillus thuringiensis strains is a valuable tool to discover novel insecticidal toxins and to manage resistance problems. In this study, seven Iranian Bt strains were selected according to their toxicity against Plodia interpunctella, to be thoroughly characterized based on their toxicity, protein profiling, proteomic analysis, gene content and β-exotoxin production. The toxicity was assessed by insect bioassays and cell viability assays (a less cost, time and material consuming technique), using four lepidopteran pests and four lepidopteran cell lines from Trichoplusia ni (Hi5), Helicoverpa zea (HzGUT), Spodoptera exigua (UCR-SE) and Spodoptera frugiperda (Sf21). The selected Bt strains showed similar protein electrophoretic profiles, but differed in toxicity. LC–MS/MS analysis of solubilized crystal proteins and gene content analyses (PCR screening) were compared and correlated with the toxicity results. Based on our data, three Bt strains could be considered as candidates for development of future bioinsecticides.  相似文献   

13.
Crops producing insecticidal crystal (Cry) proteins from the bacterium, Bacillus thuringiensis (Bt), are an important tool for managing lepidopteran pests on cotton and maize. However, the effects of these Bt crops on non-target organisms, especially natural enemies that provide biological control services, are required to be addressed in an environmental risk assessment. Amblyseius andersoni (Acari: Phytoseiidae) is a cosmopolitan predator of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae), a significant pest of cotton and maize. Tri-trophic studies were conducted to assess the potential effects of Cry1Ac/Cry2Ab cotton and Cry1F maize on life history parameters (survival rate, development time, fecundity and egg hatching rate) of A. andersoni. We confirmed that these Bt crops have no effects on the biology of T. urticae and, in turn, that there were no differences in any of the life history parameters of A. andersoni when it fed on T. urticae feeding on Cry1Ac/Cry2Ab or non-Bt cotton and Cry1F or non-Bt maize. Use of a susceptible insect assay demonstrated that T. urticae contained biologically active Cry proteins. Cry proteins concentrations declined greatly as they moved from plants to herbivores to predators and protein concentration did not appear to be related to mite density. Free-choice experiments revealed that A. andersoni had no preference for Cry1Ac/Cry2Ab cotton or Cry1F maize-reared T. urticae compared with those reared on non-Bt cotton or maize. Collectively these results provide strong evidence that these crops can complement other integrated pest management tactics including biological control.  相似文献   

14.
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.  相似文献   

15.
An agriculturally important insecticidal bacterium, Bacillus thuringiensis have been isolated from the soil samples of various part of Assam including the Kaziranga National Park. Previously, the isolates were characterized based on morphology, 16S rDNA sequencing, and the presence of the various classes’ crystal protein gene(s). In the present study, the phylogenetic analysis of a few selected isolates was performed by an unambiguous and quick method called the multiple locus sequence typing (MLST). A known B. thuringiensis strain kurstaki 4D4 have been used as a reference strain for MLST. A total of four the MLST locus of housekeeping genes, recF, sucC, gdpD and yhfL were selected. A total of 14 unique sequence types (STs) was identified. A total number of alleles identified for the locus gdpD and sucC was 12, followed by locus yhfL was 11, however, only 6 alleles were detected for the locus recF. The phylogenetic analysis using MEGA 7.0.26 showed three major lineages. Approximately, 87% of the isolates belonged to the STs corresponding to B. thuringiensis, whereas two isolates, BA07 and BA39, were clustered to B. cereus. The isolates were also screened for the diversity of vegetative insecticidal protein (vip) genes. In all, 8 isolates showed the presence of vip1, followed by 7 isolates having vip2 and 6 isolates for vip3 genes. The expression of Vip3A proteins was analyzed by western blot analyses and expression of the Vip3A protein was observed in the isolate BA20. Thus, the phylogenetic relationship and diversity of Bt isolates from Assam soil was established based on MLST, in addition, found isolates having vip genes, which could be used for crop improvement.  相似文献   

16.
The Cry3Aa and Cry3Bb insecticidal proteins of Bacillus thuringiensis are used in biopesticides and transgenic crops to control larvae of leaf-feeding beetles and rootworms. Cadherins localized in the midgut epithelium are identified as receptors for Cry toxins in lepidopteran and dipteran larvae. Previously, we discovered that a peptide of a toxin-binding cadherin expressed in Escherichia coli functions as a synergist for Cry1A toxicity against lepidopteran larvae and Cry4 toxicity against dipteran larvae. Here we report that the fragment containing the three most C-terminal cadherin repeats (CR) from the cadherin of the western corn rootworm binds toxin and enhances Cry3 toxicity to larvae of naturally susceptible species. The cadherin fragment (CR8 to CR10 [CR8-10]) of western corn rootworm Diabrotica virgifera virgifera was expressed in E. coli as an inclusion body. By an enzyme-linked immunosorbent microplate assay, we demonstrated that the CR8-10 peptide binds α-chymotrypsin-treated Cry3Aa and Cry3Bb toxins at high affinity (11.8 nM and 1.4 nM, respectively). Coleopteran larvae ingesting CR8-10 inclusions had increased susceptibility to Cry3Aa or Cry3Bb toxin. The Cry3 toxin-enhancing effect of CR8-10 was demonstrated for Colorado potato beetle Leptinotarsa decemlineata, southern corn rootworm Diabrotica undecimpunctata howardi, and western corn rootworm. The extent of Cry3 toxin enhancement, which ranged from 3- to 13-fold, may have practical applications for insect control. Cry3-containing biopesticides that include a cadherin fragment could be more efficacious. And Bt corn (i.e., corn treated with B. thuringiensis to make it resistant to pests) coexpressing Cry3Bb and CR8-10 could increase the functional dose level of the insect toxic activity, reducing the overall resistance risk.The Cry3 class of Bacillus thuringiensis Cry proteins is known for toxicity to coleopteran larvae in the family Chrysomelidae. Cry3Aa and Cry3Bb proteins are highly toxic to Colorado potato beetle (CPB) Leptinotarsa decemlineata (Coleoptera: Chrysomelidae), and both were used for the development of Bt crops (crops treated with B. thuringiensis to make them resistant to pests) and Bt biopesticides. Due to the limited efficacy of Cry3-based biopesticides/plants and the success of competing chemical pesticides, these biopesticides have had limited usage and sales (12). Cry3Bb is toxic to corn rootworms (8, 17), and a modified version is expressed in commercialized MON863 corn hybrids (26).Cry3 toxins have a mode of action that is similar to, yet distinct from, the action of lepidopteran-active Cry1 toxins. The Cry3A protoxin (73 kDa) lacks the large C-terminal region of the 130-kDa Cry1 protoxins, which is removed by proteases during activation to toxin. The Cry3A protoxin is activated to a 55-kDa toxin and then further cleaved within the toxin molecule (5, 18). Activated Cry3A toxin binds to brush border membrane vesicles with a Kd (dissociation constant) of ∼37 nM (19) and recognizes a 144-kDa binding protein in brush border membrane vesicles prepared from the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) (2). Recently, Ochoa-Campuzano et al. (20) identified an ADAM metalloprotease as a receptor for Cry3Aa toxin in CPB larvae.Structural differences between Cry3Bb and Cry3Aa toxins must underlie the unique rootworm activities of Cry3Bb toxin. As noted by Galitsky et al. (11), differences in toxin solubility, oligomerization, and binding are reported for these Cry3 toxins. Recently, Cry3Aa was modified to have activity against western corn rootworm (WCRW) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) (27). Those authors introduced a chymotrypsin/cathepsin G cleavage site into domain 1 of Cry3Aa that allowed the processing of the 65-kDa form to a 55-kDa toxin that bound rootworm midgut.Cadherins function as receptors for Cry toxins in lepidopteran and dipteran larvae. A critical Cry1 toxin binding site is localized within the final cadherin repeat (CR), CR12, of cadherins from tobacco hornworm Manduca sexta (Lepidoptera: Sphingidae) and tobacco budworm Heliothis virescens (Lepidoptera: Noctuidae) (14, 28). Unexpectedly, a fragment of B. thuringiensis R1 cadherin, the Cry1A receptor from M. sexta, not only bound toxin but enhanced Cry1A toxicity against lepidopteran larvae (6). If the binding residues within CR12 were removed, the resulting peptide lost the ability to bind toxin and lost its function as a toxin synergist. Recently, we identified a cadherin from mosquito Anopheles gambiae (Diptera: Culicidae) that binds Cry4Ba toxin and probably functions as a receptor. We discovered a similar effect where a fragment of a cadherin from A. gambiae enhanced the toxicity of the mosquitocidal toxin Cry4Ba to mosquito larvae (15). Sayed et al. (22) identified a novel cadherin-like gene in WCRW and proposed this protein as a candidate Bt toxin receptor. The cadherin-like gene is highly expressed in the midgut tissue of larval stages. The encoded protein is conserved in structure relative to that of other insect midgut cadherins.In this study, we hypothesized that a fragment from a beetle cadherin that contains a putative Bt toxin binding region might enhance the insecticidal toxicities of Cry3Aa and Cry3Bb toxins. The region spanning CR8 to CR10 (CR8-10) of the WCRW cadherin (22) was cloned and expressed in E. coli. This cadherin fragment significantly enhanced the toxicities of Cry3Aa and Cry3Bb toxins to CPB and rootworms.  相似文献   

17.
A chimeric Bacillus thuringiensis toxin (Bt) gene, cry2AX1was cloned in a bi-selectable marker free binary vector construct. The cry2AX1 gene, driven by the Chrysanthemum rbcS1 promoter, was introduced into JK1044R, the restorer line (Oryza sativa L. ssp. Indica) of a notified commercially grown rice hybrid in India, by Agrobacterium-mediated transformation. Its effect against two major lepidopteran insect pests viz., yellow stem borer (YSB) Scirpophaga incertulas, rice leaf folder (RLF) Cnaphalocrocis medinalis and one minor insect pest, oriental army worm (OAW) Mythimna separata was demonstrated through bioassays of transgenic rice plants under laboratory and greenhouse conditions. The rbcS1 promoter with chloroplast signal peptide was used to avoid Cry2AX1 protein expression in rice seed endosperm tissue. A total of 37 independent transformants were generated, of which after preliminary molecular characterization and YSB bioassay screening, five events were selected for their protein expression and bioefficacy against all three rice insect. One elite transgenic rice line, BtE15, was identified with Cry2AX1 expression ranging from 0.68 to 1.34 µg g?1 leaf fresh weight and with 80–92 % levels of resistance against rice pests at the vegetative and reproductive stages. Increase in Cry2AX1 protein concentration was also observed with crop maturity. The Cry2AX1protein concentration in the de-husked seeds was negligible (as low as 2.7–3.6 ng g?1). These results indicate the potential application of cry2AX1 gene in rice for protection against YSB, RLF and OAW.  相似文献   

18.
Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is already successfully used to control Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in protected crops. In the present work, the predatory capacity of O. laevigatus on the eggs and larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as well as the population growth capacity of O. laevigatus fed on eggs of the noctuid were determined. Fourth and 5th instar nymphs had a greater consumption of eggs than younger ones. Females consumed more eggs than males. Only 5th instar nymphs and adults preyed on the neonatal larvae of S. exigua. The intrinsic rate of natural increase did not differ between O. laevigatus fed with S. exigua eggs and those offered eggs of the substitute host Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Thus, O. laevigatus is a good candidate for the biological control of S. exigua, a cosmopolitan pest of many crops.  相似文献   

19.
Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon–Wiener diversity index, Simpson’s diversity index, species richness, and Pielou’s index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.  相似文献   

20.
The main purpose of this study was to determine the insecticidal activity of mixtures of Bacillus thuringiensis crystalline toxins and plant substances that could contribute to create a new bioinsecticide of high efficiency. We decided to determine the toxicity of crystals of B. thuringiensis MPU B9 isolate, azadirachtin (NeemAzal), mustard oil and their mixtures against lepidopteran pests: Cydia pomonella, Spodoptera exigua and Dendrolimus pini. The interaction of the components in mixtures against insects was evaluated and their utility in plant protection was assessed. The crystals and plant substances showed synergistic effect against all insect species. The occurrence of synergism between two components depended on the ratio of their concentration in mixtures. Slight amount of one of the components added to the mixture led to enhanced toxicity of the preparation. The supplementation of mustard oil with B. thuringiensis toxins from up to 0.3% of the mixture resulted in more than twofold higher observed mortality of L1 larvae of D. pini in comparison with expected mortality. The beneficial insecticidal effect of the mustard oil and crystals mixture was also noted when crystals comprised up to 1.3% and from 7 to 20% against L1 caterpillars of C. pomonella and L3 larvae of S. exigua, respectively. The insecticidal efficient effect was achieved when mixture of B. thuringiensis crystals and azadirachtin was used against the three species of lepidopteran pests. The combinations in which components interacted synergistically against caterpillars are potentially useful for making a new bioinsecticide for controlling lepidopteran pests in plant protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号