首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repressive effects of exogenous cytidine on growing cells was examined in a specially constructed strain in which the pool sizes of endogenous uridine 5'-diphosphate and uridine 5'-triphosphate cannot be varied by the addition of uracil and/or uridine to the medium. Five enzymes of the pyrimidine biosynthetic pathway and one enzyme of the arginine biosynthetic pathway were assayed from cells grown under a variety of conditions. Cytidine repressed the synthesis of dihydroorotase (encoded by pyrC), dihydroorotate dehydrogenase (encoded by pyrD), and ornithine transcarbamylase (encoded by argI). Moreover, aspartate transcarbamylase (encoded by pyrB) became further derepressed upon cytidine addition, whereas no change occurred in the levels of the last two enzymes (encoded by pyrE and pyrF) of the pyrimidine pathway. Quantitative nucleotide pool determinations have provided evidence that any individual ribo- or deoxyribonucleoside mono-, di-, or triphosphate of cytosine or uracil is not a repressing metabolite for the pyrimidine biosynthetic enzymes. Other nucleotide derivatives or ratios must be considered.  相似文献   

2.
The aspartate transcarbamylase of Bacillus subtilis is stable in exponentially growing cells, but undergoes rapid, energy-dependent inactivation when growth is inhibited by nutrient depletion or addition of antibiotics or other inhibitors of metabolism. This inactivation has been analyzed by a variety of immunochemical techniques, including direct and indirect immunoprecipitation of extracts of cells labeled with 3H-amino-acids, microcomplement fixation, and neutralization of enzymatic activity. The ability of the antibody preparation to react with various denatured, chemically modified, and proteolytically degraded forms of aspartate transcarbamylase was demonstrated. All of the techniques showed that cross-reactive protein disappeared from the cells at the same rate as enzymatic activity, and that little or no immunoprecipitable material of lower than native molecular weight was detectable during inactivation. The disappearance of material cross-reactive with aspartate transcarbamylase occurred prior to the increase in protein degradation that normally occurs in stationary B. subtilis cells and proceeded at a rate at least 20 times greater than general protein degradation. The rate of disappearance was unaffected in mutant strains deficient in intracellular protease activity or in cells treated with inhibitors of protein turnover. Aspartate transcarbamylase was shown to be stable in growing cells. We conclude that the inactivation of aspartate transcarbamylase in vivo involves, or is rapidly followed by, selective, energy-dependent degradation of the protein by a system that appears to involve a previously undescribed protease of B. subtilis.  相似文献   

3.
Sporulating cells of Bacillus brevis ATCC 9999 produced a high level of an intracellular serine protease when grown in nutrient medium. The protease activity in the crude extracts of this strain appeared at hour 5 (t5) after the end of exponential growth and increased gradually during sporulation, reaching a maximum at t12 to t13. The enzyme isolated in a partially purified state showed a pH optimum between 7.3 and 9.0 and had an apparent molecular weight of about 60,000. The activity was completely inhibited by phenylmethylsulfonyl fluoride, diisopropyl fluorophosphate, EDTA, and ethylene glycol-bis(beta-aminoethyl ether)-N,N-tetraacetic acid. The protease possessed a high activity for azocoll and low activities for azocasein and 14C-labeled hemoglobin. It cleaved the cyclic decapeptide gramicidin S specifically at the peptide linkage between valine and ornithine and hydrolyzed the oxidized insulin B-chain mainly at peptide bonds 4-5 (Glu-His), 6-7 (Leu-CysSO3H), and 15-16 (Leu-Tyr). No catalysis of bond cleavage by the enzyme on a variety of small peptides or esters was detected. Unlike other Bacillus species, B. brevis ATCC 9999 grown in nutrient medium excreted no extracellular proteases.  相似文献   

4.
It has been reported by other workers that a uridine and probably also a cytidine nucleotide are required for maximal repression of aspartate transcarbamylase encoded by the gene pyrB in Salmonella typhimurium. We have identified the repressing metabolites for three more biosynthetic enzymes, namely, dihydroorotate dehydrogenase (encoded by pyrD), orotidine-5'-monophosphate pyrophosphorylase (encoded by pyrE), and orotidine-5'-monophosphate decarboxylase (encoded by pyrF), as well as examining the repression profiles of aspartate transcarbamylase in more detail. Using a specially constructed strain of S. typhimurium (JL1055) which lacks the enzymes for the interconversion of cytidine and uridine compounds, thus allowing the independent manipulation of endogenous cytidine and uridine nucleotides, we found that a cytidine compound is the primary effector of repression in all cases except for aspartate transcarbamylase where little repression is observed in excess cytidine. For aspartate transcarbamylase, we found that the primary repressing metabolite is a uridine compound.  相似文献   

5.
Monique Guern  Guy Hervé 《Planta》1980,149(1):27-33
The DNA content of plants which were sampled in natural di-, tetra- and hexaploid populations of Hippocrepis comosa L. was estimated and the aspartate transcarbamylase activities of the corresponding cell-free extracts were compared. The amount of DNA is not exactly proportional to the number of genomes. The three kinds of populations do not differ in their aspartate transcarbamylase specific activity. While the enzyme properties are identical in the extracts derived from the diploid and hexaploid plants, the aspartate transcarbamylase present in the tetraploid cytotype shows a slightly lower affinity for one of its substrates and a significantly lower sensitivity to the feedback inhibitor UTP which is still observed after partial purification. These properties might be related to the previously reported greater ability of the tetraploid cytotype to adapt to a variety of biotopes.Abbreviations ATCase aspartate transcarbamylase - CAP carbamylphosphate - EDTA ethylenediaminetetracetic acid - Tris trihydroxymethylaminomethane - AMP adenosine monophosphate - ATP adenosine triphosphate - CMP cytidine monophosphate - CTP cytidine triphosphate - UMP uridine monophosphate - UTP uridine triphosphate  相似文献   

6.
An extracellular alkaline serine protease (called DHAP), produced by a Bacillus pumilus strain, demonstrates significant dehairing function. This protease is purified by hydrophobic interaction chromatography, ion exchange, and gel filtration. DHAP had a pI of 9.0 and a molecular weight of approximately 32,000 Dalton. It shows maximal activity at pH 10 and with a temperature of 55 degrees C; the enzyme activity can be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP). The first 20 amino acid residues of the purified DHAP have been determined with a sequence of AQTVPYGIPQIKAPAVHAQG. Alignment of this sequence with other alkaline protease demonstrates its high homology with protease from another B. pumilus strain.  相似文献   

7.
p-Aminobenzoate (PABA) synthase from Bacillus subtilis is an aggregate composed of two nonidentical subunits and has the following properties. (i) In crude extracts this enzyme catalyzes the formation of PABA in the presence of chorismate and either glutamine (amidotransferase) or ammonia (aminase). The amidotransferase activity is about 5- to 10-fold higher than the aminase activity and is stable for at least 1 week when frozen at -70 C. (II) Although no divalent cation requirement could be demonstrated with crude extracts, 2 mM ethylene-diaminetetraacetic acid completely inhibits both activities. (iii) After ammonium sulfate fractionation both the aminase and amidotransferase activities require Mg2+ and guanosine in addition to the substrates indicated above for optimal activity. The guanosine requirement can be replaced by guanosine 5'-monophosphate, guanosine 5'-diphosphate, and guanosine 5'-triphosphate but not by guanine, adenosine 5'-triphosphate, uridine 5'-triphosphate, cytidine 5'-triphosphate, thymidine 5'-triphosphate, inorganic phosphate, and phosphoribosylpyrophosphate. Furthermore, at a pH above 7.4 or below 6.4 activity is rapidly lost a 4 C, or -60 C. (IV) The enzyme is composed of two non-identical subunits, designated subunit A and subunit X. Subunit A has an estimated molecular weight of 31,000, whereas subunit X has an estimated molecular weight of 19,000. Subunit A has aminase activity but no amidotransferase activity; a mutation at the pabA locus results in the loss of PABA synthase activity. Subunit X, which is also a component of the anthranilate synthase complex, has no PABA synthase activity itself but complexes with subunit A to give an AX aggregate that can use glutamine as a substrate. (v) The molecular weight of the AX complex has been estimated at 50,000, suggesting a 1:1 ratio of subunits. (vi) The enzyme is readily associated and dissociated.  相似文献   

8.
Viable cells of Saccharomyces cerevisiae 4484-24D-1 mutant strain were treated with an Arthrobacter sp. beta-1,3-glucanase, Zymolyase-60,000, in the presence of a serine protease inhibitor, phenylmethylsulfonyl fluoride. Fractionation of the solubilized materials with Cetavlon (cetyltrimethylammonium bromide) yielded a purified mannan-protein complex, which had a molecular weight of ca. 150,000, approximately three times higher than that of the mannan isolated from the same cells by the hot-water extraction method at 135 C. The amino acid composition of the mannan-protein complex was found to be very similar to that of the mannan-protein complexes of S. cerevisiae X2180-1A wild and S. cerevisiae X2180-1A-5 mutant strains, indicating the presence of large amounts of serine and threonine. It was unexpected that the antibody-precipitating activity of this complex against the homologous anti-whole cell serum was about twice as great as that of the mannan isolated by hot-water extraction. Treatment of this complex with 100 mM NaOH, hot water at 135 C, and pronase, respectively, gave degradation products having the same molecular weight and antibody-precipitating activity as those of the hot-water extracted mannan, allowing the assumption that the protein moiety participated in a large part of this activity.  相似文献   

9.
We have previously found that the von Willebrand factor released by cultured human umbilical vein endothelial cells appeared as a single high molecular weight band in glyoxyl agarose electrophoresis. In the present studies we report that this high molecular weight endothelial cell-derived von Willebrand factor, when incubated with granulocyte lysates, was cleaved into a series of multimers indistinguishable from those seen in normal plasma (or type II von Willebrand disease). This von Willebrand factor-cleaving activity was released from granulocytes by calcium ionophore A23187 but was not detected in cytosolic fractions depleted of granular contents. It was inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride. This von Willebrand factor-cleaving activity thus provides a possible mechanism for the generation of plasma von Willebrand factor multimers from the high molecular weight form of von Willebrand factor secreted by endothelial cells.  相似文献   

10.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

11.
A leaky guaB mutant of Salmonella typhimurium LT-2 was obtained during a selection for mutants resistant to a combination of the two pyrimidine analogs, 5-fluorouracil and 5-fluorouridine. In the absence of exogenous guanine compounds, the growth rate of this mutant is limited by the endogenous supply of guanine nucleotides due to a defective inosine 5'-monophosphate dehydrogenase. Under these conditions the guanosine 5'-triphosphate pool is about 20% of normal, the cytidine 5'-triphosphate pool is reduced to below 60%, and the uridine 5'-triphosphate pool is slightly elevated. Simultaneously, levels of the pyrimidine biosynthetic enzymes are abnormal: aspartate transcarbamylase, orotate phosphoribosyltransferase, and orotidylic acid decarboxylase levels are increased 4-, 11-, and 3-fold, respectively. Levels of dihydroorotase and dihydroorotate dehydrogenase are decreased to 10 and 20%, respectively. The pyrimidine metabolism of the guaB mutant is restored completely by addition of guanine (or xanthine) to the growth medium. The data indicate purine nucleotide involvement in the regulation of expression of the pyr genes of S. typhimurium.  相似文献   

12.
An extracellular alkaline serine protease (called DHAP), produced by a Bacillus pumilus strain, demonstrates significant dehairing function. This protease is purified by hydrophobic interaction chromatography, ion exchange, and gel filtration. DHAP had a pI of 9.0 and a molecular weight of approximately 32,000 Dalton. It shows maximal activity at pH 10 and with a temperature of 55°C; the enzyme activity can be completely inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphates (DFP). The first 20 amino acid residues of the purified DHAP have been determined with a sequence of AQTVPYGIPQIKAPAVHAQG. Alignment of this sequence with other alkaline protease demonstrates its high homology with protease from another B. pumilus strain. Received: 17 April 2002 / Accepted: 24 May 2002  相似文献   

13.
The untanned proteinaceous tannery solid waste, animal fleshing (ANFL), was used as a substrate for acid protease production by Synergistes sp. The strain was isolated from an anaerobic digester used for the treatment of tannery solid waste and was selected for its enhanced protease production at activity 350-420 U/ml. The optimum pH was in the acidic range of 5.5-6.5 and optimum temperature was in mesophilic range of 25-35 degrees C. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and the zymogram analyses of the purified protein indicated an estimated molecular mass of 60 kDa. This protease could be classified as aspartic protease based on its inhibition by aspartate type protease inhibitor pepstatin and on non-inhibition by 1,10-phenanthroline, EDTA, EGTA and phenylmethylsulfonyl fluoride. The degradation of ANFL was confirmed by Gas Chromatography-Mass Spectroscopy (GC-MS), Proton Nuclear Magnetic Resonance Spectroscopy (H1 NMR) and Scanning Electron Microscopy (SEM) analyses. In this study we found that the activity of acid protease depended on factors such as calcium concentration, pH and temperature. Based on these lines of evidence, we postulate that this protease is a highly catalytic novel protease of its type.  相似文献   

14.
A purification procedure is described by which aspartate transcarbamylase was obtained from cultured cells of Drosophila melanogaster as part of a high-molecular-weight enzyme complex. The complex is shown to contain several polypeptides. An antiserum directed against the complex enzyme inhibited in vitro the activity of aspartate transcarbamylase, carbamylphosphate synthetase and dihydro-orotase which were shown to copurify on a sucrose gradient and by gel electrophoresis. A fast preparation procedure using this antiserum yielded a 220 000-molecular-weight protein in addition to the polypeptides present in the complex. A purification procedure is also described to obtain aspartate transcarbamylase from second instar larvae of Drosophila. At this stage, the enzyme is not complexed with carbamylphosphate synthetase and dihydro-orotase but exhibits the same molecular weight as the aspartate transcarbamylase moiety found in the high-molecular-weight complex of cultured cells.  相似文献   

15.
Aspartate transcarbamylase from Bacillus subtilis has been purified to apparent homogeneity. A subunit molecular weight of 33,500 +/- 1,000 was obtained from electrophoresis in polyarcylamide gels containing sodium dodecyl sulfate and from sedimentation equilibrium analysis of the protein dissolved in 6 M guanidine hydrochloride. The molecular weight of the native enzyme was determined to be 102,000 +/- 2,000 by sedimentation velocity and sedimentation equilibrium analysis. Aspartate transcarbamylase thus appears to be a trimeric protein; cross-linking with dimethyl suberimidate and electrophoretic analysis confirmed this structure. B. subtilis aspartate transcarbamylase has an amino acid composition quite similar to that of the catalytic subunit from Escherichia coli aspartate transcarbamylase; only the content of four amino acids is substantially different. The denaturated enzyme has one free sulfhydryl group. Aspartate transcarbamylase exhibited Michaelis-Menten kinetics and was neither inhibited nor activated by nucleotides. Several anions stimulated activity 2- to 5-fold. Immunochemical studies indicated very little similarity between B. subtilis and E. coli aspartate transcarbamylase or E. coli aspartate transcarbamylase catalytic subunit.  相似文献   

16.
A permeabilization procedure was adapted to allow the in situ determination of aspartate transcarbamylase activity in Saccharomyces cerevisiae. Permeabilization is obtained by treating cell suspensions with small amounts of 10% toluene in absolute ethanol. After washing, the cells can be used directly in the enzyme assays. Kinetic studies of aspartate transcarbamylase (EC 2.1.3.2) in such permeabilized cells showed that apparent Km for substrates and Ki for the feedback inhibitor UTP were only slightly different from those reported using partially purified enzyme. The aspartate saturation curve is hyperbolic both in the presence and absence of UTP. The inhibition by this nucleotide is noncompetitive with respect to aspartate, decreasing both the affinity for this substrate and the maximal velocity of the reaction. The saturation curves for both substrates give parallel double reciprocal plots. The inhibition by the products is linear noncompetitive. Succinate, an aspartate analog, provokes competitive and uncompetitive inhibitions toward aspartate and carbamyl phosphate, respectively. The inhibition by phosphonacetate, a carbamyl phosphate analog, is uncompetitive and noncompetitive toward carbamyl phosphate and aspartate, respectively, but pyrophosphate inhibition is competitive toward carbamyl phosphate and noncompetitive toward aspartate. These results, as well as the effect of the transition state analog N-phosphonacetyl-L-aspartate, all exclude a random mechanism for aspartate transcarbamylase. Most of the data suggest an ordered mechanism except the substrates saturation curves, which are indicative of a ping-pong mechanism. Such a discrepancy might be related to some channeling of carbamyl phosphate between carbamyl phosphate synthetase and aspartate transcarbamylase catalytic sites.  相似文献   

17.
CAD, is a multidomain polypeptide, with a molecular weight of over 200,000, that has glutamine-dependent carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase activity as well as regulatory sites that bind UTP and 5-phosphoribosyl 1-pyrophosphate. The protein thus catalyzes the first three steps of de novo pyrimidine biosynthesis and controls the activity of the pathway in higher eukaryotes. Controlled proteolysis of CAD isolated from Syrian hamster cells, cleaves the molecule into seven major proteolytic fragments that contain one or more of the functional domains. The two smallest fragments, which had molecular weights of 44,000 and 40,000, corresponded to the fully active dihydroorotase (DHO) and aspartate transcarbamylase (ATC) domains, respectively, but the larger fragments have not been previously characterized. In this study, enzymatic assays of partially fractionated digests and immunoblotting with antibodies specifically directed against the purified ATC domain, the purified dihydroorotase domain and an 80-kDa fragment of the putative carbamyl-phosphate synthetase domain established the precursor-product relationships among all of the major proteolytic fragments of CAD. These results indicate that 1) only the intact molecule had all of the functional domains, 2) a species with a molecular weight of 200,000 was produced in the first step of proteolysis which had glutamine-dependent carbamyl-phosphate synthetase and dihydroorotase activity, but neither aspartate transcarbamylase activity nor the antigenic determinants present on the isolated ATC domain, and 3) cleavage of the 200-kDa species produced a species, with a molecular mass of 150,000 which lacked both aspartate transcarbamylase and dihydroorotase domains. This 150-kDa species, containing the postulated carbamyl-phosphate synthetase, glutamine, and regulatory (UTP, 5-phosphoribosyl 1-pyrophosphate) domains, had two elastase-sensitive sites that divided this region of the polypeptide chain into 10-, 65-, and 80-kDa segments. The location of the functional sites on these segments has not yet been established. The immunochemical analysis also revealed the existence of possible precursors of the stable aspartate transcarbamylase and dihydroorotase domains, suggesting that the chain segments connecting the functional domains of CAD are extensive and that the overall size of the intact polypeptide chain has been underestimated. On the basis of these studies we have proposed a model of the domain structure of CAD.  相似文献   

18.
Aspartate transcarbamylase is synthesized during exponential growth of Bacillus subtilis and is inactivated when the cells enter the stationary phase. This work is a study of the regulation of aspartate transcarbamylase synthesis during growth and the stationary phase. Using specific immunoprecipitation of aspartate transcarbamylase from extracts of cells pulse-labeled with tritiated leucine, we showed that the synthesis of the enzyme decreased very rapidly at the end of exponential growth and was barely detectable during inactivation of the enzyme. Synthesis of most cell proteins continued during this time. When the cells ceased growing because of pyrimidine starvation of a uracil auxotroph, however, synthesis and inactivation occurred simultaneously. Measurement of pools of pyrimidine nucleotides and guanosine tetra- and pentaphosphate demonstrated that failure to synthesize aspartate transcarbamylase in the stationary phase was not explained by simple repression by these compounds. The cessation of aspartate transcarbamylase synthesis may reflect the shutting off of a "vegetative gene" as part of the program of differential gene expression during sporulation. However, aspartate transcarbamylase synthesis decreased normally at the end of exponential growth at the nonpermissive temperature in a mutant strain that is temperature-sensitive in sporulation and RNA polymerase function. Cessation of aspartate transcarbamylase synthesis appeared to be normal in three other temperature-sensitive RNA polymerase mutants and in several classes of spo0 mutants.  相似文献   

19.
We screened a strain which can produce a new protease. The strain, Lactobacillus sp. no. 1, was isolated from a natural environment as an organism which could utilize gramicidin S as a sole nitrogen source. This strain was proved to produce much protease because it formed a large halo on a plate containing casein, and the protease was purified using ion exchange column chromatography. The amino-terminal amino acid sequence of the hydrolyzed products by the cleavage of gramicidin S was determined by a protein sequencer, and sizes of those products were analyzed by a mass spectrometer. The protease could cleave two peptide bonds between l-Orn-l-Leu in gramicidin S. These cleavage sites were different from other reported cleavage sites of gramicidin S by protease. The molecular weight of the protease was 42,000 by SDS-polyacrylamide gel electrophoresis. The optimum pH and temperature for the enzyme activity were 5.5 and 45°C, respectively. The enzyme activity was inhibited by EDTA, but not by phenylmethylsulfonyl fluoride (PMSF). Because the reported protease that can hydrolyze gramicidin S was a serine protease and the cleavage site was different from that of this protease from Lactobacillus sp. no. 1, we concluded that this enzyme was a new type of metal protease which can cleave both linear and cyclic peptide substrates with a unique substrate specificity.  相似文献   

20.
A serine protease-producing marine bacterial strain named as PT-1 was isolated and identified as a family of Marinomonas arctica, based on molecular characterization of 16S rRNA gene sequence, phylogenetic tree, and fatty acid composition analyses. Optimized culture conditions for growth of the bacterium PT-1 and production of protease (ProA) were determined to be pH 8.0 in the presence of 5 % NaCl, at 37 °C during 24 h of incubation in the presence of 1.0 % skim milk. The molecular weight of the purified ProA was estimated to be 63-kDa as a major band by SDS-PAGE. We were intrigued to find that the activity of ProA was not inhibited by pepstatin A, chymostatin, and leupeptin known as inhibitors for cysteine protease. However, phenylmethylsulfonyl fluoride (PMSF) completely inhibited protease activity, suggesting that the ProA is like a serine protease. To the best of our knowledge, this is the first report on serine protease of Marinomonas species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号