首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The syntheses of novel N-aminoalkyl proline-derived spacers (X′) in polycationic (R–X′–R)-motif cell-penetrating α–ω–α-peptides are described as improved molecular transporters and their structural features studied by CD. FACS analysis shows enhanced cellular uptake and confocal microscopy indicates predominantly cytoplasmic localization. The oligomers are efficient at transporting pDNA into cells. The chirality together with the hydrophobicity and flexibility derived from the spacer chain are found to have marked influence on the cell-penetrating and cargo delivery properties of the cell-penetrating peptides (CPPs). The peptides containing N-(3-aminopropyl)-d-proline spacers are found to be the best at cell penetration and cargo delivery in the present study.  相似文献   

2.
3.
Measurements of inter- and intramolecular distances are important for monitoring structural changes and understanding protein interaction networks. Fluorescence resonance energy transfer and functionalized chemical spacers are the two predominantly used strategies to map short-range distances in living cells. Here, we describe the development of a hybrid approach that combines the key advantages of spectroscopic and chemical methods to estimate dynamic distance information from labeled proteins. Bifunctional spectroscopic probes were designed to make use of adaptable-anchor and length-varied spacers to estimate molecular distances by exploiting short-range collisional electron transfer. The spacers were calibrated using labeled polyproline peptides of defined lengths and validated by molecular simulations. This approach was extended to estimate distance restraints that enable us to evaluate the resting-state model of the Shaker potassium channel.  相似文献   

4.
Cell immobilization by covalent linkage to an epoxide derivative of hydroxyalkyl methacrylate gel via glutaraldehyde-diamine spacers improves the tolerance of Saccharomyces cerevisiae cells to ethanol. This was attributed to membrane compositional changes accompanying this mode of cell attachment. The stability of the membrane alterations was tested under salt stress, and the character of stimuli inducing the phenotype changes of attached cells is discussed. Received 12 May 1998/ Accepted in revised form 08 February 1999  相似文献   

5.
Measurements of inter- and intramolecular distances are important for monitoring structural changes and understanding protein interaction networks. Fluorescence resonance energy transfer and functionalized chemical spacers are the two predominantly used strategies to map short-range distances in living cells. Here, we describe the development of a hybrid approach that combines the key advantages of spectroscopic and chemical methods to estimate dynamic distance information from labeled proteins. Bifunctional spectroscopic probes were designed to make use of adaptable-anchor and length-varied spacers to estimate molecular distances by exploiting short-range collisional electron transfer. The spacers were calibrated using labeled polyproline peptides of defined lengths and validated by molecular simulations. This approach was extended to estimate distance restraints that enable us to evaluate the resting-state model of the Shaker potassium channel.  相似文献   

6.
The following was recently reported by Bonner et al. (1995): (1) Rapid differentiation occurred into two zones in Dictyostelium discoideum cells confined in a fine glass capillary. The cells in the anterior zone exposed to the air appear similar to prestalk cells, while the posterior zone isolated from the air mimics prespore cells. (2) The volumes of the two zones are proportional to each other for different sized cell masses, and the proportion is the same as that in normal migrating slugs. We investigated the nature of this newly discovered rapid differentiation in a slightly modified geometry. Exponentially growing cells were harvested, washed to remove external nutrients, and pelleted by centrifugation. Subsequently, a small drop of the pelleted (starved) cells was placed on a slide glass and then confined in a two-dimensional space between the slide glass and a coverslip, with help of spacers whose thickness varied from 25 to 100 μm. As a result, a dark zone, which looked optically different, emerged within several minutes in the periphery of the disc of the confined cells, corresponding to the zonation in a capillary as previously reported. When the width of the peripheral zone was measured for more than 30 samples of different diameters for each thickness of the spacers, the width was found to be always about 100 μm, irrespective of the size difference of the cell mass placed. This seems to be contradictory to the previous observation made by Bonner et al. (1995). We also examined oxygen concentration dependence on the zone width. The zone width was found to be independent of the oxygen concentration at low concentrations, but increased rapidly at high concentrations. A reaction-diffusion mechanism for formation of the zone and possible involvement of atmospheric oxygen (O2) in the initial steps of cell differentiation and pattern formation is discussed.  相似文献   

7.
Retroviruses expressing two different receptor-binding domains linked by proline-rich spacers infect only cells expressing both retroviral receptors (Valsesia-Wittman et al., EMBO J. 6:1214-1223, 1997). Here we apply this receptor cooperation strategy to target human tumor cells by linking single-chain antibodies recognizing tumor antigens via proline-rich spacers to the 4070A murine leukemia virus surface protein.  相似文献   

8.
We have previously reported a set of Moloney murine leukemia virus derived envelopes retargeted to the Pit-2 phosphate transporter molecule, by insertion of the Pit-2 binding domain (BD) at the N terminus of the ecotropic retroviral envelope glycoproteins (S. Valsesia-Wittmann et al., J. Virol. 70:2059-2064, 1996). The resulting chimeric envelopes share two BDs: an additional N-terminal BD (Pit-2 BD) and the BD of the ecotropic envelope (mCAT-1 BD). By inserting a variety of different amino acid spacers between the two binding domains, we showed that retroviruses can potentially use the targeted cell surface receptor Pit-2, the ecotropic retroviral receptor mCAT-1, or both receptors cooperatively for entry into target cell (S. Valsesia-Wittmann et al., EMBO J 6:1214-1223, 1997). An extreme example of receptor cooperativity was encountered when envelopes with specific proline-rich interdomain spacers (PRO spacers) were tested: both receptors had to be coexpressed at the surface of the targeted cells to cooperatively allow infection. Here, we characterized the role of PRO spacer in the cooperation of receptors. We have shown that the particular organization of the PRO spacer-a beta-turn polyproline-was responsible for the cooperative effect. In the native configuration of the viruses, the structure masked the regions located downstream of the PRO spacer, thus the mCAT-1 BD. After interaction with the targeted Pit-2 receptor, the BD of the backbone envelope became accessible, and we demonstrated that interaction between the mCAT-1 BD and the mCAT-1 receptor is absolutely necessary. This interaction leads to natural fusion triggering and entry of viruses into targeted cells.  相似文献   

9.
Immunostimulatory DNA sequences (ISS) containing CpG motifs induce interferon-α (IFN-α) and interferon-γ (IFN-γ) from human peripheral blood mononuclear cells and stimulate human B cells to proliferate and produce IL-6. We studied the motif and structural requirements for both types of activity using novel chimeric immunomodulatory compounds (CICs), which contain multiple heptameric ISS connected by non-nucleoside spacers in both linear and branched configurations. We found that the optimal motifs and structure for IFN-α production versus B cell activation differed. IFN-α production was optimal for CICs containing the sequences 5′-TCGXCGX and 5′-TCGXTCG, where X is any nucleotide. The presentation of multiple copies of these heptameric ISS with free 5′-ends via long, hydrophilic spacers, such as hexaethylene glycol, significantly enhanced the induction of IFN-α. Conversely, human B cell activity was predominately dependent on ISS motif, with 5′-TCGTXXX and 5′-AACGTTC being the most active sequences. Thus, we found CICs could be ‘programmed’ for IFN-α production or B cell activation as independent variables. Additionally, CICs with separate human- and mouse-specific motifs were synthesized and these were used to confirm in vivo activity in mice. CICs may offer unique advantages over conventional ISS because identification of the optimal motifs, spacers and structures for different biological properties allows for the assembly of CICs exhibiting a defined set of activities tailored for specific clinical applications.  相似文献   

10.
The immobilization strategy of cell‐specific aptamers is of great importance for studying the interaction between a cell and its aptamer. However, because of the difficulty of studying living cell, there have not been any systematic reports about the effect of immobilization strategies on the binding ability of an immobilized aptamer to its target cell. Because atomic force spectroscopy (AFM) could not only be suitable for the investigation of living cell under physiological conditions but also obtains information reflecting the intrinsic properties of individuals, the effect of immobilization strategies on the interaction of aptamer/human hepatocarcinoma cell Bel‐7404 was successively evaluated using AFM here. Two different immobilization methods, including polyethylene glycol immobilization method and glutaraldehyde immobilization method were used, and the factors, such as aptamer orientation, oligodeoxythymidine spacers and dodecyl spacers, were investigated. Binding events measured by AFM showed that a similar unbinding force was obtained regardless of the change of the aptamer orientation, the immobilization method, and spacers, implying that the biophysical characteristics of the aptamer at the molecular level remain undisturbed. However, it showed that the immobilization orientation, immobilization method, and spacers could alter the binding probability of aptamer/Bel‐7404 cell. Presumably, these factors may affect the accessibility of the aptamer toward its target cell. These results may provide valuable information for aptamer sensor platforms including ultrasensitive biosensor design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The attachment of Candida utilis, Kluyveromyces lactis, and Saccharomyces cerevisiae cells stimulates an increase in the content of cell wall polysaccharides and mannoproteins, accompanied by increased resistance to the inhibitory effect of 5-bromo-6-azauracil. The covalent attachment of viable yeasts was accomplished (via dialdehyde-amino spacers) by reaction of aldehyde groups of the carrier with reactive amino groups in accessible cell surface proteins. The employed technique enables the optimization of yeast sources of β-1,3-, β-1,6- glucans, mannan, and mannoprotein. The modulatory effect of the cell attachment is discussed.  相似文献   

12.
CRISPR-Cas systems of adaptive immunity in prokaryotes consist of CRISPR arrays (clusters of short repeated genomic DNA fragments separated by unique spacer sequences) and cas (CRISPR-associated) genes that provide cells with resistance against bacteriophages and plasmids containing protospacers, i.e. sequences complementary to CRISPR array spacers. CRISPR-Cas systems are responsible for two different cellular phenomena: CRISPR adaptation and CRISPR interference. CRISPR adaptation is cell genome modification by integration of new spacers that represents a unique case of Lamarckian inheritance. CRISPR interference involves specific recognition of protospacers in foreign DNA followed by introduction of breaks into this DNA and its destruction. According to the mechanisms of action, CRISPR-Cas systems have been subdivided into two classes, five types, and numerous subtypes. The development of techniques based on CRISPR interference mediated by the Type II system Cas9 protein has revolutionized the field of genome editing because it allows selective, efficient, and relatively simple introduction of directed breaks into target DNA loci. However, practical applications of CRISPR-Cas systems are not limited only to genome editing. In this review, we focus on the variety of CRISPR interference and CRISPR adaptation mechanisms and their prospective use in biotechnology.  相似文献   

13.
X-ray studies as well as structure-activity relationships indicate that the central part of class I MHC-binding nonapeptides represents the main interaction site for a T cell receptor. In order to rationally manipulate T cell epitopes, several nonpeptidic spacer have been designed from the X-ray structure of a MHC-peptide complex and substituted for the T cell receptor-binding part of several antigenic peptides. The binding of the modified epitopes to the HLA-B*2705 protein was studied by an in vitro stabilisation assay and the thermal stability of all complexes examined by circular dichroism spectroscopy. Depending on their chemical nature and length, the introduced spacers may be classified into two categories. Monofunctional spacers (11-amino undecanoate, (R)-3-hydroxybutyrate trimer) simply link two anchoring peptide positions (P3 and P9) but loosely contact the MHC binding groove, and thus decrease more or less the affinity of the altered epitopes to HLA-B*2705. Bifunctional spacers ((R)-3-hydroxybutyrate and beta-homoalanine combinations) not only bridges the two distant anchoring amino acids but also strongly interact with the binding cleft and lead to an increase in binding to the MHC protein. The presented modified ligands constitute interesting tools for perturbing the T cell response to the parent antigenic peptide.  相似文献   

14.
A three-step synthesis of bis-β-d-glucopyranosides containing thioalkane or thioarene spacers of different length and flexibility is described. The key-step reaction allows an easy modulation of final saccharidic products so that a library of molecules with different glycosidic residues and spacers can be obtained. Two of the new thioarene-spaced bis-β-d-glucopyranosides endow with a specific cytotoxic potential. A more detailed investigation of one of the two compounds ascertains that this effect is attributable to induction of cell death by apoptosis.  相似文献   

15.
A series of bisindole-pyrrolobenzodiazepine conjugates (5a-f) linked through different alkane spacers was prepared and evaluated for their anticancer activity. All compounds exhibited significant anticancer potency and the most potent compounds 5b and 5e were taken up for detailed studies on MCF-7 cell line. Cell cycle effects were examined apart from investigating the inhibition of tubulin polymerization for compounds 2a, 2b, 5b and 5e at 2μM. FACS analysis showed that at higher concentrations (4 and 8μM) there was an increase of sub-G1 phase cells and decrease of G2/M phase cells, thus indicating that compounds 5b and 5e are effective in causing apoptosis in MCF-7 cells. It was also observed that compounds 5b and 5e showed the down regulation of histone deacetylase protein levels such as HDAC1, 2, 3, 8 and increase in the levels of p21, followed by apoptotic cell death. The apoptotic nature of these compounds was further evidenced by increased expression of cleaved-PARP and active caspase-7 in MCF-7 cells.  相似文献   

16.
Nakajima H  Shimbara N  Shimonishi Y  Mimori T  Niwa S  Saya H 《Gene》2000,260(1-2):121-131
The protein invasin expressed on the cell surface of the pathogenic bacteria Yersinia pseudotuberculosis mediates the entry of this bacterium into cultured mammalian cells. We have developed a system for expression of random peptides on the cell surface of Escherichia coli (E. coli) by creation of a fusion hybrid between a peptide and the invasin protein. The fusion protein constructs consist of part of the outer membrane domain of the invasin protein, six proline spacers, and a decamer of random peptides flanked by cysteine residues (CX(10)C). Peptides were constitutively expressed on the cell surface in the resulting random decamer peptide library, which we designated as ESPEL (E. coli Surface Peptide Expression Library). The ESPEL was systematically screened for its binding affinity toward human cultured cells. Several bacterial clones were identified whose binding to human cells was mediated by peptides expressed on the bacterial cell surface. Flow cytometric analysis showed that both the identified bacterial clones and these corresponding chemically synthesized peptides bound to human cells specifically. The techniques described provide a new method that uses E. coli random peptide library to select targeting peptides for mammalian cells without any knowledge of the human cellular receptors.  相似文献   

17.
In an effort to regulate the behavior of mammalian cell entrapped in a gel, the gels were functionalized with the putative cell-binding (-Arg-Gly-Asp-) (RGD) domain. The adhesion molecules composed of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides and the cell recognition ligands were inculcated into the thermo-reversible hydrogel composed of N-isopropylacrylamide, with a small amount of succinyl poly(ethylene glycol) (PEG) acrylate (MW 2000) used as the biomimetic extracellular matrix (ECM). The GRGDS-containing p(NiPAAm-co-PEG) copolymer gel was examined in vitro for its ability to promote cell spreading and to increase the viability of the cells by introducing PEG spacers. ECM poorly adhered to hydrogel lacking adhesion molecules permitting only a 20% spread of the seeded cells after 10 days. When the PEG spacer arms, which were immobilized by a peptide linkage, had been integrated into the hydrogel, the conjugation of RGD improved cell spreading by 600% in a 10-day trial.  相似文献   

18.
A series of novel, fluorescent ligands designed to bind with high affinity and specificity to the asialoglycoprotein receptor (ASGP-R) has been synthesized and tested on human liver cells. The compounds bear three non-reducing, β-linked Gal or GalNAc moieties linked to flexible spacers for an optimal spatial interaction with the binding site of the ASGP-R. The final constructs were selectively endocytosed by HepG2 cells derived from parenchymal liver cells—the major human liver cell type—in a process that was visualized with the aid of fluorescence microscopy. Furthermore, the internalization was analyzed with flow cytometry, which showed the process to be receptor-mediated and selective. The compounds described in this work could serve as valuable tools for studying hepatic endocytosis, and are suited as carriers for site-specific drug delivery to the liver.  相似文献   

19.
The mitochondrial genome of wild-type yeast cells. IV. Genes and spacers   总被引:12,自引:0,他引:12  
The organization of the mitochondrial genome of wild-type Saccharomyces cerevisiae cells has been investigated further, by degrading mitochondrial DNA with micrococcal nuclease. Under the conditions used, this enzyme very strongly degrades the A + T-rich stretches (spacers) whereas it only inflicts a limited number of breaks into the G + C-rich stretches (genes). The macromolecular fragments derived from the “genes” have been separated from the oligonucleotides originating from the “spacers” by gel filtration, and both sorts of products have been investigated. It has been shown (a) that the spacers are very homogeneous in base composition and have a G + C content lower than 5% (mitochondrial DNA has a G + C content of 18%); (b) that the genes are very heterogeneous in base composition, the G + C content ranging from about 25% to 50%, when the average size of the fragments is 1·2 × 105; smaller fragments, molecular weight 4 × 104, having a G + C level as high as 65%, have been isolated in a yield of 10%; the average G + C content of genes is about 32%; (c) that genes and spacers are present in about equal amounts in the mitochondrial genome and that they have comparable average sizes.  相似文献   

20.
In vivo transcription of rDNA spacers in Drosophila.   总被引:21,自引:8,他引:13       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号