首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The geometry of the midshaft cross-sections of the femur and humerus of five indriid species was analysed. Internal (marrow cavity) and external diameters were measured on X-rays in the anteroposterior (a-p) and mediolateral (m-l) planes; cross-sectional areas, second moments of area, and section moduli were calculated using formulae for a hollow ellipse. Cortical thickness, robusticity indices (relating external diameters to the length of the bones), and a-p/m-l shape variables were also calculated. Model II regression was supplemented by analyses of correlation between size and shape. Indriids are saltatory, i.e., their locomotion is dominated by the hind limbs. Accordingly, the femur is more rigid than the humerus, and it shows a consistent difference between the a-p and m-l planes in measures related to bending strength. Cortical thickness varies considerably both within and across species. The type specimen of the new species Propithecus tattersalli is virtually indistinguishable from P. verreauxi on the basis of its long bone cross-sectional geometry. Femoral robusticity is uncorrelated with size, but humeral robusticity decreases significantly with increasing size. Femoral shape variables (a-p/m-l) are all negatively correlated with body size, indicating that m-l dimensions of the femur increase at a faster rate than do a-p dimensions. The highly loaded plane of movement seems to be more reinforced in the smaller species. Contrary to static biomechanical scaling predictions of positive allometry, all cross-sectional parameters scale relatively close to isometry. It is concluded that either changes in locomotor performance must compensate for the weight-related increase in forces and moments or that the larger-bodied animals operate appreciably closer to the limits of their safety margins.  相似文献   

2.
Bilateral asymmetry in the structure of the second metacarpal was examined in relation to functional hand dominance in a large, clinically nonselected, healthy population sample from the Baltimore Longitudinal Study of Aging. Bilateral bone measurements were made from anteroposterior hand radiographs of a total of 992 individuals, 609 males and 383 females, with an age range of 19–94 years. Hand dominance was determined on the basis of personal impression. Total width and medullary width at the midshaft of the second metacarpal were measured to 0.05 mm using a Helios caliper. These two measurements were used to derive cortical thickness, cortical bone area, periosteal (total) area, medullary area, percent cortical area, and the second moment of area in the mediolateral plane. In both right and left-handed individuals, statistically significant side differences were found in the calculated bone areas and the second moment of area, with the dominant hand being larger. Cortical thickness did not show significant side-related differences for either handedness. These results show that functional handedness leads to periosteal and endosteal expansion of the second metacarpal cortex on the dominant side, increasing bone strength without increasing cortical thickness. This is the first time this pattern of asymmetry has been reported in left-handers as well as right-handers. Our results argue for the primacy of environmental (mechanical) effects in determining bilateral asymmetry of limb bone structural properties. © 1994 Wiley-Liss, Inc.  相似文献   

3.
This study used an aggregate measure of robusticity (based on humeral areal and inertial cross-sectional components) to test the hypothesis that rowing on oceans led to more robust humeri than did rowing on rivers or not rowing at all. Results confirmed the hypothesis that male ocean-rowers had more robust humeri than did male river-rowers or nonrowers. However, although the females from the ocean-rowing populations did not row, they averaged more robust humeri than did females from the non-ocean-rowing populations. Males averaged greater robusticity than did females. The robusticity of ocean-rowing populations, therefore, does not seem to be due solely to bone remodeling resulting from strenuous rowing. Humeral robusticity is difficult to attribute to specific activities because, in humans, upper limbs are utilized for many activities. Some populations may have more robust humeri because certain environments require greater overall activity levels in order to survive.  相似文献   

4.
The analysis of humeral asymmetry in Recent human skeletal samples and an extant tennis-player sample documents minimal asymmetry in bone length, little asymmetry in distal humeral articular breadth, but pronounced and variable asymmetry in mid- and distal diaphyseal crosssectional geometric parameters. More specifically, skeletal samples of normal modern Euroamericans, prehistoric and early historic Amerindians, and prehistoric Japanese show moderate (ca. 5–14%) median asymmetry in diaphyseal cross-sectional areas and polar second moments of area, whereas the tennis-player sample, with pronounced unilateral physical activity, exhibits median asymmetries of 28–57% in the same parameters. A sample of Neandertals with nonpathological upper limbs exhibits similarly low articular asymmetry but pronounced diaphyseal asymmetries, averaging 24–57%. In addition, three Neandertals with actual or possible post-traumatic upper limb alterations have the same low articular asymmetry but extremely high diaphyseal asymmetries, averaging 112–215%. These data support those from experimental work on animals, exercise programs of humans, and human clinical contexts in establishing the high degree of diaphyseal plasticity possible for humans, past and present, under changing biomechanical loading conditions. This lends support to activity-related functional interpretations of changing human diaphyseal morphology and robusticity during the Pleistocene. © 1994 Wiley-Liss, Inc.  相似文献   

5.
This paper investigates the changes in upper and lower limb robusticity and activity patterns that accompanied the transition to a Neolithic subsistence in western Liguria (Italy). Diaphyseal robusticity measures were obtained from cross-sectional geometric properties of the humerus and femur in a sample of 16 individuals (eight males and eight females) dated to about 6,000-5,500 BP. Comparisons with European Late Upper Paleolithics (LUP) indicate increased humeral robusticity in Neolithic Ligurian (NEOL) males, but not in females, with a significant reduction in right-left differences in both sexes. Sexual dimorphism in robusticity increases in upper and lower limb bones. Regarding the femur, while all female indicators of bending strength decrease steadily through time, values for NEOL males approach those of LUP. This suggests high, and unexpected, levels of mechanical stress for NEOL males, probably reflecting the effects of the mountainous terrain on lower limb remodeling. Comparisons between NEOL males and a small sample of LUP hunter-gatherers from the same area support this interpretation. In conclusion, cross-sectional geometry data indicate that the transition to Neolithic economies in western Liguria did not reduce functional requirements in males, and suggest a marked sexual division of labor involving a more symmetrical use of the upper limb, and different male-female levels of locomotory stress. When articulated with archaeological, faunal, paleopathological, and ethnographic evidence, these results support the hypothesis of repetitive, bimanual use of axes tied to pastoral activities in males, and of more sedentary tasks linked to agriculture in females.  相似文献   

6.
It is assumed that the transition from the Late Eneolithic to the Early Bronze Age in Central Europe was associated with substantial changes in subsistence and the perception of gender differences. However, the archeological record itself does not entirely support this model. Alternatively, this transition may be interpreted as a continuous process. We used asymmetry in external dimensions, and asymmetry in size and distribution of cortical tissue of humeri to elucidate the nature of this transition with respect to differences in manipulative behavior. The total sample of 67 individuals representing five archaeological cultures was used. The results indicate that the pattern of asymmetry of the humeral external measurements and the cross-sectional parameters taken at 35% of humeral biomechanical length remain stable during the Late Eneolithic and Early Bronze Age. However, females of both periods show fluctuating asymmetry for all of the cross-sectional parameters, but directional asymmetry for biomechanical length. Males are nonsignificantly shifted from the line of equivalence for biomechanical length, but exhibit directional asymmetry for the cortical area and polar moment of area. Only distal articular breadth yields fluctuating asymmetry for both females and males in both periods. Thus, the transition from the Late Eneolithic to the Early Bronze Age can be seen as a continuous process that probably affected only a limited part of human activities. We interpret the differences between females and males of both periods as evidence of gender-specific activities; males might have been associated with extra-domestic agricultural labor that resulted in asymmetrical manipulative loading and females with domestic labor with symmetrical manipulative loading in both periods.  相似文献   

7.
1957年,在辽宁省建平县发现了一根古人类肱骨化石,编号PA103。通过同一批龙骨中筛选的哺乳动物化石,吴汝康推断PA103应该为更新世晚期古人类,并对该化石进行了表面形态特征观察和描述。为了对PA103化石的内外结构进行更全面的了解,除了线性测量数据的对比,本文还通过计算机断层扫描技术,结合生物力学和形态示量图分析对建平古人类右侧肱骨化石PA103进行了分析。通过本研究发现,PA103骨干横断面的生物力学粗壮度和力学形状指数明显小于尼安德特人,而与同时期欧亚大陆古人类不利手侧最为接近,这说明建平人右侧肱骨可能不是惯用手,同时,建平人的行为活动应该与同时期同地区的古人类处于同一水平,而小于尼安德特人。整体来看,PA103骨干骨密质厚度和截面惯性矩与近现代人的分布模式较为接近,除局部数值增大外,其整体数值小于近现代人的平均水平,这可能与遗传或行为活动有关,由于缺少古人类化石对比数据,更详细的了解还需后期开展更多相关的研究。  相似文献   

8.
In vivo bone strain experiments were performed on the ulnae of three female rhesus macaques to test how the bone deforms during locomotion. The null hypothesis was that, in an animal moving its limbs predominantly in sagittal planes, the ulna experiences anteroposterior bending. Three rosette strain gauges were attached around the circumference of the bone slightly distal to midshaft. They permit a complete characterization of the ulna's loading environment. Strains were recorded during walking and galloping activities. Principal strains and strain directions relative to the long axis of the bone were calculated for each gauge site. In all three animals, the lateral cortex experienced higher tensile than compressive principal strains during the stance phase of walking. Compressive strains predominated at the medial cortex of two animals (the gauge on this cortex of the third animal did not function). The posterior cortex was subject to lower strains; the nature of the strain was highly dependent on precise gauge position. The greater principal strains were aligned closely with the long axis of the bone in two animals, whereas they deviated up to 45° from the long axis in the third animal. A gait change from walk to gallop was recorded for one animal. It was not accompanied by an incremental change in strain magnitudes. Strains are at the low end of the range of strain magnitudes recorded for walking gaits of nonprimate mammals. The measured distribution of strains in the rhesus monkey ulna indicates that mediolateral bending, rather than anteroposterior bending, is the predominant loading regime, with the neutral axis of bending running from anterior and slightly medial to posterior and slightly lateral. A variable degree of torsion was superimposed over this bending regime. Ulnar mediolateral bending is apparently caused by a ground reaction force vector that passes medial to the forearm. The macaque ulna is not reinforced in the plane of bending. The lack of buttressing in the loaded plane and the somewhat counterintuitive bending direction recommend caution with regard to conventional interpretations of long bone cross-sectional geometry. Am J Phys Anthropol 106:87–100, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
This paper examines humeral cross-sectional properties in two different samples of later medieval date: a group of blade-injured males from the sites of Towton, North Yorkshire, and Fishergate in the City of York, England, and a comparative group of nonblade-injured males also from the site of Fishergate in York. CT image slices were taken of the humeral shaft at 20%, 35%, 50%, 65%, and 80% from the distal end to investigate population differences in levels and patterns of mechanical loading. Bilateral asymmetry is investigated and comparisons are made with different populations of varying activity levels. Architectural changes such as humeral torsion are also investigated to determine the relationship between architectural changes and biomechanical efficiency. Results show significant differences in diaphyseal robusticity between the Towton sample and the comparative population, as well as significant differences in diaphyseal shape both between limbs within the Towton sample and between blade-injured samples. Population differences were also identified in the level of bilateral asymmetry, further demonstrating the differences in movement and activity patterns both between and within samples. These variations may relate to distinctive, more strenuous weapon use and differences in strenuous movement patterns in the two groups.  相似文献   

10.
Variation in upper limb long bone cross‐sectional properties may reflect a phenotypically plastic response to habitual loading patterns. Structural differences between limb bones have often been used to infer past behavior from hominin remains; however, few studies have examined direct relationships between behavioral differences and bone structure in humans. To help address this, cross‐sectional images (50% length) of the humeri and ulnae of university varsity‐level swimmers, cricketers, and controls were captured using peripheral quantitative computed tomography. High levels of humeral robusticity were found in the dominant arms of cricketers, and bilaterally among swimmers, whereas the most gracile humeri were found in both arms of controls, and the nondominant arms of cricketers. In addition, the dominant humeri of cricketers were more circular than controls. The highest levels of ulnar robusticity were also found in the dominant arm of cricketers, and bilaterally amongst swimmers. Bilateral asymmetry in humeral rigidity among cricketers was greater than swimmers and controls, while asymmetry for ulnar rigidity was greater in cricketers than controls. The results suggest that more mechanically loaded upper limb elements––unilaterally or bilaterally––are strengthened relative to less mechanically loaded elements, and that differences in mechanical loading may have a more significant effect on proximal compared to distal limb segments. The more circular humerus in the dominant arm in cricketers may be an adaptation to torsional strain associated with throwing activities. The reported correspondence between habitual activity patterns and upper limb diaphyseal properties may inform future behavioral interpretations involving hominin skeletal remains. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The effect of swimming activity on bone architecture in growing rats   总被引:4,自引:0,他引:4  
The effect of non-habitual physical activity on bone architecture in the rat humeral shaft was examined. Two groups of rats were trained to swim for 1 h a day, for 20 weeks, at two training levels. The control group consisted of sedentary rats. Parameters of cross-sectional bone morphology (cross-section areas, principal area moments of inertia and their ratio) were used to evaluate the response of bone architecture to mechanical loading. The strength of bone was assessed by measuring the ultimate compressive force and stress. The cortical cross-section area and principal moments of inertia were found to be significantly higher in the swimming groups than in the controls. Examination of the ratio between the major and minor moments of inertia revealed a pronounced change in the shape of the bone cross-section which became more rounded following swimming training. The ultimate compressive force was significantly higher in the swimming rats while the changes in ultimate stress were not significant. Our results indicate a gain of bone strength due to increased periosteal apposition and modified bone tissue distribution. The marked changes in bone morphology are attributed to the different nature of the forces and moments exerted on the humerus during swimming compared to those prevailing during normal locomotion.  相似文献   

12.
A large sample (n = 370) of Central California prehistoric skeletal remains was analyzed for sexual dimorphism of long bones using nine femoral and nine humeral dimensions. Sex of all individuals was assessed using traits of the os pubis. Discriminant analysis was done separately for the robust Early Horizon sample and the Middle/Late Horizon sample. Use of multiple variables did not produce appreciably better results over the use of several of the best variables, analyzed singly. Attention is focused on measurements of maximum diameter femoral head, femoral bicondylar width, and diameter of the humeral head (transverse or vertical). These variables produce excellent separation of the sexes with about 90% accuracy for the Middle/Late Horizon sample. They have been overlooked in the recent literature in which the relative values of length versus midshaft dimensions are debated. The measurements found to be superior in this study are taken at the ends of the bones where durability of these regions is indicated by large sample sizes found in this study. We suggest workers redirect their focus from the midshaft to the ends of the long bones. The discriminant analyses presented here have greater accuracy than most claims for either long bone or cranial sex determination. These standards, based on two samples with differing robusticity, may have applicability for workers in other areas who lack large skeletal samples.  相似文献   

13.
Elizabeth Weiss 《HOMO》2010,61(1):48-58
Most muscle marker research consists of post-cranial analyses, but some researchers examine crania to reconstruct activities. Regardless of bones examined, anthropologists know of some of the complexities surrounding muscle marker development. Here, posterior cranial muscle markers are analyzed to determine whether they are useful in reconstructing activities by examining effects that may hinder reconstructions. Additionally, upper limb muscle markers and humeral cross-sectional robusticity variables are correlated with cranial muscle markers to determine if robust individuals are generally robust due to the synergistic effects of muscle use.Cranial muscle markers of 65 prehistoric California Amerinds are scored using a five-point observer rating scale. Body mass is calculated from femoral head size; maximum cranial length and breadth are measured with a spreading caliper; and age and sex are determined through standard procedures. Upper limb muscle markers are scored on seven sites using two dimensions within a seven-point scale. Cross-sectional properties are calculated from biplanar humeral radiographs. Aggregates are created for cranial muscle markers, upper limb muscle markers, and cross-sectional robusticity.Cranial muscle markers correlate significantly with cranial length, r=0.25 and cross-sectional robusticity of humerus, r=0.29; P’s<0.05. All variables differed between sexes (Mann-Whitney=31.00-307.50, P’s<0.01). Results imply that some differences in cranial muscle markers are related to size; however, individuals with well-developed cranial muscle markers have greater upper limb robusticity possibly due to activity patterns. Sex differences remained after size controls and may relate to activity differences.  相似文献   

14.
The purpose of this article is to investigate temporal shifts in skeletal robusticity to infer behavioral changes in two populations (Neolithic, NEOL and Medieval, MED) settled in the same geographic area but involved in different subsistence economies (pastoralism and coastal resources exploitation). This comparison allows us to test the hypothesis that occupational stress and mobility in the same environment produce predictable changes in the robusticity of both upper and lower limbs. Results show a lower degree of humeral robusticity and a similar degree of humeral asymmetry in the two sexes in the MED population. These results are consistent with the relatively less stressful subsistence economy documented in the MED population relative to that of the NEOL. Lower limb results suggest that femoral robusticity does not correlate directly with the level of logistical mobility, but is instead due to the summation of several diverse factors that place biomechanical loads on the hindlimb, particularly unevenness of the terrain. However, female femoral gracility seems to indicate that below a certain "threshold" of mobility, i.e., movement over the natural terrain, terrain conformation is no longer the main contributing factor to femoral robusticity. The femoral shape index I(x)/I(y) declines through time, particularly in males. This agrees with the expected mobility of the samples based on archaeological and historical data, providing further evidence on the reliability of this index in inferring terrestrial mobility.  相似文献   

15.
Measures of diaphyseal robusticity have commonly been used to investigate differences in bone strength related to body size, behavior, climate, and other factors. The most common methods of quantifying robusticity involve external diameters, or cross-sectional geometry. The data derived from these different methods are often used to address similar research questions, yet the compatibility of the resulting data has not been thoroughly tested. This study provides the first systematic comparison of externally derived measures of postcranial robusticity, with those based upon cross-sectional geometry. It includes sections taken throughout the skeleton, comparisons of prediction errors associated with different measurements, and analysis of the implications of different methods of body size standardization on the prediction of relative bone strength. While the results show reasonable correlations between diaphyseal diameters and strengths derived from cross-sectional geometry, considerable prediction errors are found in many cases. A new approach to externally based quantification of diaphyseal robusticity based upon moulding of sub-periosteal contours is proposed. This method maximizes correlation with cross-sectional geometry (r(2) = .998) and minimizes prediction errors in all cases. The results underscore the importance of accurate periosteal measurement in the quantification of bone strength, and suggest that, regardless of theoretical scaling predictions, external area based robusticity estimates involving the product of diaphyseal diameters are most directly comparable to cross-sectional geometric properties when they are standardized using the product of body mass and bone length.  相似文献   

16.
To address the effects of an evolutionary increase in body size on long bone skeletal allometry, scaling patterns relating body mass, bone length, limb length, midshaft diameters, and cross-sectional properties of the humerus and femur were analyzed for four species of scansorial mustelids. Humeral and, to a lesser extent, femoral allometry is consistent with expectations of elastic similarity: bone and limb length scale with negative allometry on body mass while bone robusticity (cross-sectional parameters against bone length) scales with strong positive allometry. Differences between fore- and hindlimb scaling patterns, however, are observed, with size-dependent increases in forelimb length and humeral strength and robusticity exceeding those of the hindlimb and femur. It is hypothesized that this greater fore- than hindlimb lengthening results in postural modifications that serve to straighten the hindlimb of larger bodied scansorial mustelids relative to smaller mustelids. Straightening of hindlimb joints would more precisely align the long axis of the femur with peak (vertical) ground reaction forces, thereby accounting for the reduction in relative bending stresses acting on the femur compared to the humerus. J. Morphol. 235:121–134, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
The condyles of 72 aged and sexed Haida Indians were measured for anteroposterior and mediolateral diameter and their approximate areas calculated. Dental wear was assessed for the same individuals. Asymmetry of condyle size did not appear to change with age. In a pair-wise analysis, no relationship was found between the largest of a pair of condyles and the most worn side of the dentition. The difference in size between each pair of condyles (normalized for individual size) was plotted as a histogram and found to have a normal distribution with a mean of 0 and no skewness. Condyle asymmetry does not appear to be related to differential chewing forces but more closely fits the model of fluctuating asymmetry.  相似文献   

18.
The area moment of inertia of the tibia: A risk factor for stress fractures   总被引:1,自引:0,他引:1  
In a prospective study of stress fractures among Israeli infantry recruits, the area moment of inertia of the tibia was found to have a statistically significant correlation with the incidence of tibial, femoral and total stress fractures. Recruits with "low" area moments of inertia of the tibia were found to have higher stress fracture morbidity than those with "high" area moments of inertia. The best correlation was obtained when the area moment of inertia was calculated about the AP axis of bending at a cross-sectional level corresponding to the narrowest tibial width on lateral X-rays, a point which is at the distal quarter of the tibia. This finding indicates that bending forces about the approximate AP axis are an important causal factor for tibial and many other stress fractures. The bone's bending strength, or ability to resist bending moments, as measured by the area moment of inertia, helps determine risk to stress fracture.  相似文献   

19.
The present work investigated the effect of different breathing strategies performed with and without body immobilization on postural performance. Sway amplitude and mean velocity of center of pressure displacement in the anteroposterior and mediolateral planes were assessed by the force platform in 48 healthy volunteers. Balance was estimated during quiet breath, inspiratory, expiratory breath holding and hyperventilation with and without immobilization of the neck, trunk, hip, and knee joints. In general, restriction of body mobility caused a reduction of the postural stability in anteroposterior plane, while mediolateral body sway decreased. Our results imply that body immobilization reduced the ability to compensate respiratory disturbances in the anteroposterior direction and, on the contrary, facilitated mamtaining balance in the mediolateral plane.  相似文献   

20.
While a wide variety of studies have focused on population variation in adult cross‐sectional properties, relatively little is known about population variation in postcranial robusticity in immature individuals. Furthermore, the age at which the population differences readily detected in adults manifest during growth is also unknown. This research addresses these gaps in our current understanding through the analysis of immature humeral and femoral long bone strength. Cross‐sectional geometry was used to compare the developmental trajectories of diaphyseal strength in Late Pleistocene Neandertal and modern human subadults to a sample of immature humans from seven geographically diverse Holocene populations. Population differences in size‐standardized cross‐sectional properties appear to be systemic and develop very early in ontogeny in the Holocene sample. In many cases, these differences are present before one year of age. In general, the Late Pleistocene fossil samples fit within the range of recent human variation in long bone strength. Population differences detected here are likely related to a combination of factors including activity patterns, genetic propensities, and nutritional status. These results highlight the complex mosaic of processes that result in adult postcranial robusticity, and suggest that further exploration of the developmental interplay between intrinsic and extrinsic influences on skeletal robusticity will likely enhance our understanding of adult postcranial morphology. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号