首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Human immunodeficiency virus (HIV) causes a long, asymptomatic infection characterized by normal to elevated numbers of circulating CD8+ cells and a progressive decline in CD4+ cells. It has been speculated that HIV-specific antiviral activity driven by CD8+ T cells may control viral replication during this period and maintain the clinically asymptomatic stage of disease. The disease induced in cats by feline immunodeficiency virus (FIV) is similar to HIV in that it is characterized by a long asymptomatic stage with a progressive decline in CD4+ cells, culminating in AIDS. In the present study, we demonstrate that FIV is more readily isolated from CD8+ T-cell-depleted peripheral blood mononuclear cells (PBMC) of FIV-infected cats than from unfractionated PBMC cultures. In addition, CD8+ T cells isolated from FIV-positive cats demonstrating anti-FIV activity in PBMC cultures inhibit FIV infection of FCD4E cells in vitro. Anti-FIV activity is not found in FIV- negative cats and is not characteristic of cats acutely infected with FIV but is present in the majority of chronically infected, clinically asymptomatic and symptomatic cats. Decreases in plasma and cell-associated viremia during the acute-stage FIV infection appears to precede the appearance of CD8+ anti-FIV cells in the circulation. In summary, this study demonstrates a population(s) of CD8+ T cells in chronically FIV-infected cats capable of suppressing FIV replication in cultured PBMC. The significance of anti-FIV CD8+ cells in the immunopathogenesis of the infection and disease progression has yet to be determined.  相似文献   

2.
In the host defense mechanism against feline immunodeficiency virus (FIV) infection, CD8(+) T cells specifically attack virus-infected cells and suppress the replication of the virus in a non-cytolytic manner by secreting soluble factors. In this study, we measured CD8(+) T cell anti-FIV activity in 30 FIV-infected cats. We investigated its relationship with the number of peripheral blood lymphocytes, particularly the CD4(+) T cell and CD8(+) T cell counts, and the relationship between anti-FIV activity and the number of T cells of CD8alpha(+)beta(lo) and CD8alpha(+)beta(-) phenotypes. A clearly significant correlation was observed between anti-FIV activity and the number of CD4(+) T cells. A weaker anti-FIV activity was associated with a greater decrease in the number of CD4(+) T cells. However, there was no significant correlation between anti-FIV activity and the number of B or CD8(+) T cells. Compared with SPF cats, FIV-infected cats had significantly higher CD8alpha(+)beta(lo) T cell and CD8alpha(+)beta(-) T cell counts, but, no significant correlation was observed between these cell counts and anti-FIV activity. This anti-FIV activity significantly correlated with plasma viremia, which was detected in cats with a weak anti-FIV activity. These results suggest that the anti-FIV activity of CD8(+) T cells plays an important role in plasma viremia and the maintenance of CD4(+) T cells in the body. It is unlikely that CD8alpha(+)beta(lo) or CD8alpha(+)beta(-) T cells appearing after FIV infection represent a phenotype of CD8(+) cells with anti-FIV activity.  相似文献   

3.
4.
Feline immunodeficiency virus (FIV) infection induces an increase in two subpopulations (CD8alpha(+)beta(low) and CD8alpha(+)beta(-)) within CD8(+) peripheral blood lymphocytes (PBLs) of cats. It is known that depletion of CD8(+) cells often results in augmentation of FIV proliferation in PBL culture, similarly to the case of human immunodeficiency virus. In this study, we attempted to define PBL subpopulations mediating antiviral activity in five cats intravaginally infected with a molecularly cloned FIV isolate. Several subpopulations (CD8alpha(+)beta(+), CD8alpha(+)beta(-), and CD4(+) cells) were shown to participate in inhibition of the FIV replication, at least in part, in a major histocompatibility complex-unrestricted manner. Moreover, the subpopulations showing anti-FIV activity were different among the individual cats.  相似文献   

5.
The role of cellular immunity in the establishment and progression of immunosuppressive lentivirus infection remains equivocal. To develop a model system with which these aspects of the host immune response can be studied experimentally, we examined the response of cats to a hybrid peptide containing predicted T-and B-cell epitopes from the gag and env genes of feline immunodeficiency virus (FIV). Cats were immunized with an unmodified 17-residue peptide incorporating residues 196 to 208 (from gag capsid protein p24) and 395 to 398 (from env glycoprotein gp120) of the FIV Glasgow-8 strain by using Quil A as an adjuvant. Virus-specific lymphocytotoxicity was measured by chromium-51 release assays. The target cells were autologous or allogeneic skin fibroblasts either infected with recombinant FIV gag vaccinia virus or pulsed with FIV peptides. Effector cells were either fresh peripheral blood mononuclear cells or T-cell lines stimulated with FIV peptides in vitro. Cytotoxic effector cells from immunized cats lysed autologous, but not allogeneic, target cells when they were either infected with recombinant FIV gag vaccinia virus or pulsed with synthetic peptides comprising residues 196 to 205 or 200 to 208 plus 395. Depletion of CD8+ T cells, from the effector cell population abrogated the lymphocytotoxicity. Immunized cats developed an antibody response to the 17-residue peptide immunogen and to recombinant p24. However, no antibodies which recognized smaller constituent peptides could be detected. This response correlated with peptide-induced T-cell proliferation in vitro. This study demonstrates that cytotoxic T lymphocytes specific for FIV can be induced following immunization with an unmodified short synthetic peptide and defines a system in which the protective or pathological role of such responses can be examined.  相似文献   

6.
Disease progression of feline immunodeficiency virus (FIV) infection is characterized by up-regulation of B7.1 and B7.2 costimulatory molecules and their ligand CTLA4 on CD4(+) and CD8(+) T cells. The CD4(+)CTLA4(+)B7(+) phenotype described in FIV(+) cats is reminiscent of CD4(+)CD25(+)CTLA4(+) cells, a phenotype described for immunosuppressive T regulatory (Treg) cells. In the present study, we describe the phenotypic and functional characteristics of CD4(+)CD25(+) T cells in PBMC and lymph nodes (LN) of FIV(+) and control cats. Similar to Treg cells, feline CD4(+)CD25(+) but not CD4(+)CD25(-) T cells directly isolated from LN of FIV(+) cats do not produce IL-2 and fail to proliferate in response to mitogen stimulation. Unstimulated CD4(+)CD25(+) T cells from FIV(+) cats significantly suppress the proliferative response and the IL-2 production of Con A-stimulated autologous CD4(+)CD25(-) T cells compared with unstimulated CD4(+)CD25(+) T cells from FIV(-) cats. Flow-cytometric analysis confirmed the apparent activation phenotype of the CD4(+)CD25(+) cells in LN of chronically FIV(+) cats, because these cells showed significant up-regulation of expression of costimulatory molecules B7.1, B7.2, and CTLA4. These FIV-activated, anergic, immunosuppressive CD25(+)CTLA4(+)B7(+)CD4(+) Treg-like cells may contribute to the progressive loss of T cell immune function that is characteristic of FIV infection.  相似文献   

7.
BACKGROUND: Development of a practical and sensitive assay for evaluating immune responses against cancer Ag has been a challenge for immune monitoring of patients. We have established a reproducible method using peptide-pulsed K562-A*0201 cells as APC to expand Ag-specific T cells in vitro. This method may be applied for monitoring T-cell responses in cancer immunotherapy clinical trials. METHODS: Autologous PBMC from HLA-A*0201+ healthy donors and patients with melanoma were stimulated with peptide-pulsed K562-A*0201 cells under varying conditions. We investigated (1) different culture conditions, including the requirements for serum and cytokines for expansion of CD8+ T lymphocytes; (2) a range of peptide concentrations for Ag loading; (3) phenotypic characterization of responding T cells; and (4) APC:responder ratios and their effects on T-cell expansion. We validated these conditions by ELISPOT and intracellular cytokine staining (ICS) assays using peptides from influenza, Epslein-Barr Virus (EBV) and tyrosinase. RESULTS: Conditions for optimal T-cell expansion using K562-A*0201 APC included input of 2 x 10(6) PBMC, a 10 microg/mL peptide concentration to pulse K562-A*0201 cells, a 1:30 APC:responder T-cell ratio and culture in 10% autologous plasma supplemented with IL-2 and IL-15. In these conditions, Ag-specific T cells expanded >100-fold over a 10-day culture period (peak at day 12). DISCUSSION: This bulk culture method is simple and reliable for expanding human Ag-specific T cells using peptide-pulsed K562-A*0201 cells. This HLA-matched APC line can be adapted to other HLA haplotypes, and has advantages for monitoring clinical trials of immunotherapy with limited availability of autologous APC and PBMC from patients.  相似文献   

8.
Despite intensive experimentation to develop effective and safe vaccines against the human immunodeficiency viruses and other pathogenic lentiviruses, it remains unclear whether an immune response that does not afford protection may, on the contrary, produce adverse effects. In the present study, the effect of genetic immunization with the env gene was examined in a natural animal model of lentivirus pathogenesis, infection of cats by the feline immunodeficiency virus (FIV). Three groups of seven cats were immunized by intramuscular transfer of plasmid DNAs expressing either the wild-type envelope or two envelopes bearing mutations in the principal immunodominant domain of the transmembrane glycoprotein. Upon homologous challenge, determination of plasma virus load showed that the acute phase of viral infection occurred earlier in the three groups of cats immunized with FIV envelopes than in the control cats. Genetic immunization, however, elicited low or undetectable levels of antibodies directed against envelope glycoproteins. These results suggest that immunization with the FIV env gene may result in enhancement of infection and that mechanisms unrelated to enhancing antibodies underlay the observed acceleration.  相似文献   

9.
The role of cellular immunity in vaccine protection against FIV infection was evaluated using adoptive cell transfer studies. Specific-pathogen-free cats received two adoptive transfers of washed blood cells from either vaccinated or unvaccinated donors with varying MHC compatibility at 1-week intervals, and a homologous FIV(Pet) challenge 1 day after the first adoptive transfer. FIV-specific CTL, IFN-gamma production, and proliferation responses were detected in the PBMC from the vaccinated donors. Seven of eleven (64%) recipients of cells from half-matched/vaccinated donors remained negative for FIV-antibodies after FIV challenge and four of those were completely protected. Two of two recipients of cells from MHC-identical/vaccinated donors were completely protected. All recipients of cells from unrelated/vaccinated, half-matched/unvaccinated, or unrelated/unvaccinated donors were unprotected. Thus, protection mediated by adoptive transfer of immunocytes from vaccinated cats was MHC-restricted, occurred in the absence of antiviral humoral immunity, and correlated with the transfer of cells with FIV-specific CTL and T-helper activities.  相似文献   

10.
11.
The two main constraints that currently limit a broader usage of T cell therapy against viruses are the delay required to obtain specific T cells and the safety of the selection procedure. In the present work we developed a generally applicable strategy that eliminates the need for APC for timing reasons, and the need for infectious viral strains for safety concerns. As a model, we used the selection of T lymphocytes specific for the immunodominant CMV phosphoprotein pp65. PBMC from healthy seropositive donors were first depleted of IL-2R alpha-chain CD25(+) cells and were then stimulated for 24-96 h with previously defined peptide Ags or with autologous PBMC infected with a canarypox viral vector encoding the total pp65 protein (ALVAC-pp65). Subsequent immunomagnetic purification of newly CD25-expressing cells allowed efficient recovery of T lymphocytes specific for the initial stimuli, i.e., for the already known immunodominant epitope corresponding to the peptides used as a model or for newly defined epitopes corresponding to peptides encoded by the transfected pp65 protein. Importantly, we demonstrated that direct PBMC stimulation allowed recovery not only of CD8(+) memory T lymphocytes, but also of the CD4(+) memory T cells, which are known to be crucial to ensure persistence of adoptively transferred immune memory. Finally, our analysis of pp65-specific T cells led to the identification of several new helper and cytotoxic epitopes. This work thus demonstrates the feasibility of isolating memory T lymphocytes specific for a clinically relevant protein without the need to prepare APC, to use infectious viral strains, or to identify immunodominant epitopes.  相似文献   

12.
We have examined the in vitro induction and activity of feline immunodeficiency virus (FIV)-specific cytolytic T cells obtained from cats experimentally infected for 7 to 17 weeks or 20 to 22 months with the Petaluma isolate of FIV. Normal or FIV-infected autologous and allogeneic T lymphoblastoid cells were used as target cells in chromium-51 or indium-111 release assays. When effector cells consisted of either fresh peripheral blood mononuclear cells or concanavalin A- and interleukin-2-stimulated cells, only low levels of cytotoxicity were observed. However, the levels of FIV-specific cytotoxicity were consistently higher in both groups of cats following in vitro stimulation of the effector cells with irradiated, FIV-infected autologous T lymphoblastoid cells and interleukin-2. The effector cells lysed autologous but not allogeneic FIV-infected target cells and were composed predominantly of CD8+ T cells, indicating that the FIV-specific cytotoxicity measured in this system is mediated by CD8+, major histocompatibility complex class I-restricted T cells. These studies show that FIV-specific cytolytic T cells can be detected as early as 7 to 9 weeks postinfection, and they define a system to identify virus-encoded epitopes important in the induction of protective immunity against lentiviruses.  相似文献   

13.
14.
Broadly directed hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTL) have been identified from liver-infiltrating lymphocytes but have been more difficult to assess in peripheral blood of infected persons. To enhance the detection of CTL from peripheral blood mononuclear cells (PBMC), we cocultured PBMC with autologous Epstein-Barr virus-transformed B-lymphoblastoid cell lines that had been infected with recombinant vaccinia virus constructs so that they expressed the entire translated polyprotein of HCV-H, a type 1a strain. These stimulated cells from HCV-infected as well as exposed seronegative persons were then cloned at limiting dilution and tested for HCV-specific CTL activity using a standard (51)Cr release assay. HCV-specific CTL were detected in PBMC from seven of nine persons with chronic hepatitis, including five of seven in whom CTL had previously been detected from liver biopsy specimens but not PBMC. In a single person with chronic HCV infection, CTL directed against as many as five different epitopes were detected in peripheral blood and were similar in specificity to those detected in liver tissue. This technique was used to evaluate eight subjects identified to be at high risk for HCV exposure due to continued injection drug abuse; no evidence of CTL in PBMC was found. We conclude that CTL can be detected in PBMC from the majority of persons with chronic HCV infection but are present at lower levels or absent in exposed but persistently seronegative persons. The high degree of concordance of HCV epitopes identified from liver and PBMC suggests that this strategy is a reasonable alternative to liver biopsy for characterizing the CTL response to HCV in chronically infected persons.  相似文献   

15.
The aim of this study was to investigate the cell-mediated immune response in 14 patients undergoing curative resection for a gastrointestinal tumor by the induction of peripheral blood mononuclear cell (PBMC)-mediated immune activity against autologous tumour cells. PBMC were stimulated by interleukin-12 (IL-12; 100 IU/ml) and IL-2 (1,000 IU/ml) without contact with tumour cells for 36 h. Specific cytotoxic activity against autologous tumour cells (auTu), natural killer (NK)-sensitive cells (K562) and allogeneic tumour cells (RF48/HT29) was determined by fluorescence cytotoxicity assay. Additionally, inhibition experiments using the mononuclear antibodies (mAb) FMC16 and W6/32 against major histocompatibility complex I (MHC I) on autologous tumour cells were performed in order to determine the involvement of specific T lymphocytes. The cytotoxic activity of unstimulated PBMC did not differ between the three target cells. IL-12 caused a 3.2-fold increase in activity against auTu ( P=0.002). In contrast, after stimulation with IL-2, only a slight increase in activity was observed. After IL-12 stimulation, cytotoxic activity against auTu was 2.5- to 2.7-fold higher than the corresponding activity against K562/allogeneic tumour cells ( P=0.002/ P=0.006). After blocking of the MHC I complex on auTu by FMC 16 or W6/32 mAb, a 62.9%/74.4% reduction in the specific cytotoxicity of IL-12-stimulated PBMC was found. In summary, IL-12 induced an effective immune response against auTu, which was partly mediated by specific cytotoxic T lymphocytes (CTL). It was considered that de novo generation of this activity during 36 h incubation without antigen contact was hardly possible, but that the observed induction of effective anti-tumor cytotoxicity was rather based on the re-activation of a pre-existing immune potential from the tumour-host interaction. These findings indicate the existence of an autologous anti-tumor immune response following curative resection in patients undergoing surgery for solid tumours, which might influence the development of tumour recurrence from disseminated tumour cells. Making use of this capacity could constitute an attractive immunotherapeutical approach for curatively operated tumour patients.  相似文献   

16.
The present study shows that human large granular lymphocytes (LGL) depleted of OKT3 (T lymphocytes) and Leu-M1-positive (monocytes) cells exhibit accessory cell function for the T lymphoproliferative responses to the soluble stimulants Staphylococcus protein A (SpA) or Streptolysin O (SLO), as well as to surface antigens in the autologous and allogeneic mixed leukocyte reaction (MLR). Fractionation of LGL into subsets according to their reactivity with alpha OKT11, alpha DR, and alpha OKM1 MoAb led to the identification of the subset(s) of LGL with OKT11+, DR+, OKM1+ phenotype as the antigen-presenting cell (APC), whereas the DR-, OKM1- subset(s) of LGL was completely ineffective. Furthermore, virtually all the natural killer (NK) activity of LGL was associated with OKT11+ and OKM1+, DR+ LGL that exerted the observed APC function, suggesting that NK-active cells may also act as effective APC for T lymphocyte activation. These results indicate that human LGL with NK activity may exert other noncytotoxic functions and may play a major role in immunoregulation.  相似文献   

17.
Seroprevalence of Bartonella henselae, Toxoplasma gondii, feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) infections was investigated in 1,447 domestic cats derived from the north (Hokkaido) to the south (Okinawa) prefectures in Japan. Of the cats investigated, 8.8% (128/1,447) were seropositive to B. henselae, 5.4% (78/1,447) to T. gondii, 9.8% (107/1,088) to FIV, and 2.9% (32/1,088) to FeLV, respectively. For B. henselae infection, the positive rate varied from 11.5% in cats of 1 to <2 years old to 7.2% in those over 3 years old. Outdoor cats showed higher positive rate (14.5%) than that (7.0%) in indoor ones. The rate (13.5%) in flea-infested cats was significantly higher than that (7.4%) in flea-negative cats. The positive rates in southern and urban sites were more likely to be higher than those in northern and suburban sites, suggesting that warm and humid environments, density of cat population, and raising status, including hygienic condition and flea infestation in cats may correlate to higher seroprevalence of B. henselae infection. For T. gondii, FIV and FeLV infections, the seroprevalence also tended to be higher in outdoor, flea-infested cats and advanced age groups. For FIV infection, the positive rates in male (14.3%) and outdoor cats (15.0%) were significantly higher than those in female (5.0%) and indoor cats (4.6%). On the other hand, no significant difference in seropositivities was observed in FeLV and T. gondii infections concerning to both genders and raising status.  相似文献   

18.
Viral RNA load has been shown to indicate disease stage and predict the rapidity of disease progression in human immunodeficiency virus type 1 (HIV-1)-infected individuals. We had previously demonstrated that feline immunodeficiency virus (FIV) RNA levels in plasma correlate with disease stage in infected cats. Here we expand upon those observations by demonstrating that plasma virus load is 1 to 2 logs higher in cats with rapidly progressive FIV disease than in long-term survivors. Differences in plasma FIV RNA levels are evident by 1 to 2 weeks after infection and are consistent throughout infection. We also evaluated humoral immune responses in FIV-infected cats for correlation with survival times. Total anti-FIV antibody titers did not differ between cats with rapidly progressive FIV disease and long-term survivors. These findings indicate that virus replication plays an important role in FIV disease progression, as it does in HIV-1 disease progression. The parallels in virus loads and disease progressions between HIV-1 and FIV support the idea that the accelerated disease model is well suited for the study of therapeutic agents directed at reducing lentiviral replication.  相似文献   

19.
Independent studies have demonstrated different cell tropisms for molecular clones of feline immunodeficiency virus (FIV). In this report, we examined three clones, FIV-pF34, FIV-14, and FIV-pPPR, for replication in Crandell feline kidney (CrFK) cells, feline peripheral blood mononuclear cells (PBMC), and feline macrophage cultures. Importantly, cell tropism for these three clones was also examined in vivo. FIV-pF34 replication was efficient in CrFK cells but severely restricted in PBMC, whereas replication of FIV-pPPR was vigorous in PBMC but severely restricted in CrFK cells. FIV-14 replication was productive in both CrFK cells and PBMC. Interestingly, all three molecular clones replicated with similar efficiencies in primary feline monocyte-derived macrophages. In vivo, FIV-pF34 proved least efficient for establishing persistent infection, and proviral DNA when detectable, was localized predominately to nonlymphoid cell populations (macrophages). FIV-pPPR proved most efficient for induction of a persistent viremia in vivo, and proviral DNA was localized predominately in CD4(+) and CD8(+) lymphocyte subsets. FIV-14 inoculation of cats resulted in an infection characterized by seroconversion and localization of proviral DNA in CD4(+) lymphocytes only. Results of this study on diverse FIV molecular clones revealed that in vitro replication efficiency of an FIV isolate in PBMC directly correlated with replication efficiency in vivo, whereas proficiency for replication in macrophages in vitro was not predictive for replication potential in vivo. Also, infection of both CD4(+) and CD8(+) lymphocyte subsets was associated with higher virus load in vivo. Results of the studies on these three FIV clones, which exhibited differential cell tropism, indicated a correlation between in vitro and in vivo cell tropism and virus replication.  相似文献   

20.
All six cats passively immunized with sera from either feline immunodeficiency virus (FIV)-vaccinated cats or cats infected with FIV (Petaluma strain) were protected from homologous FIV infection at a challenge dose that infected all six control cats. Passive immunization with sera from cats vaccinated with uninfected allogeneic T cells used to grow the vaccine virus did not protect either of two cats against the same FIV challenge. These results suggest that antiviral humoral immunity, perhaps in synergy with anticellular antibodies, may be responsible for previously reported vaccine protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号