首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Objectives:To examine the effects of the regulation on IGF-1 by miR-26a on the serum of patients with osteoporosis (OP) and apoptosis and proliferation of chondrocytes of mice with OP.Methods:Totally 47 patients with OP treated in our hospital between July 2018 and November 2019 were selected as the research group, and 42 healthy individuals in physical examination over this period were selected as the control group. Serum was sampled from each participant in both groups, and miR-26a in the sampled serum was quantified and compared. In addition, chondrocytes were sampled from mice with OP. The changes of proliferation and apoptosis of the chondrocytes were analyzed via MTT and flow cytometry, and the levels of Caspase3, Caspase9, Bax, and Bcl-2 were quantified by western blot (WB) assay.Results:MiR-26a was expressed highly in the serum of patients with OP and chondrocytes of mice with OP, while IGF-1 was lowly expressed in them. According to the dual-luciferase reporter assay, there was a targeting correlation between miR-26a and IGF-1, and suppressing miR-26a significantly up-regulated the expression and protein level of IGF-1.Conclusions:MiR-26a can serve as a biological marker for the diagnosis of OP, and it can suppress the proliferation of chondrocytes and promote their apoptosis by regulating IGF-1.  相似文献   

3.
4.
The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.  相似文献   

5.
Extracellular signal-regulated kinases (ERKs) have been implicated to be dispensable for self-renewal of mouse embryonic stem (ES) cells, and simultaneous inhibition of both ERK signaling and glycogen synthase kinase 3 (GSK3) not only allows mouse ES cells to self-renew independent of extracellular stimuli but also enables more efficient derivation of naïve ES cells from mouse and rat strains. Interestingly, some ERKs stay active in mouse ES cells which are maintained in regular medium containing leukemia inhibitory factor (LIF) and bone morphogenetic protein (BMP). Yet, the upstream signaling for ERK activation and their roles in mouse ES cells, other than promoting or priming differentiation, have not been determined. Here we found that mouse ES cells express three forms of Raf kinases, A-Raf, B-Raf, and C-Raf. Knocking-down each single Raf member failed to affect the sustained ERK activity, neither did A-Raf and B-Raf double knockdown or B-Raf and C-Raf double knockdown change it in ES cells. Interestingly, B-Raf and C-Raf double knockdown, not A-Raf and B-Raf knockdown, inhibited the maximal ERK activation induced by LIF, concomitant with the slower growth of ES cells. On the other hand, A-Raf, B-Raf, and C-Raf triple knockdown markedly inhibited both the maximal and sustained ERK activity in ES cells. Moreover, Raf triple knockdown, similar to the treatment of U-0126, an MEK inhibitor, significantly inhibited the survival and proliferation of ES cells, thereby compromising the colony propagation of mouse ES cells. In summary, our data demonstrate that all three Raf members are required for ERK activation in mouse ES cells and are involved in growth and survival of mouse ES cells.  相似文献   

6.
7.
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.  相似文献   

8.
9.
10.
11.
Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer affecting people all over the globe. Recent studies have indicated that long non-coding RNAs (lncRNAs) possess the ability to regulate gene expression. Initially, we uncovered increased LINC00355 expressions in lung adenocarcinoma tissues and cells. Functionally, our findings demonstrated that LINC00355 silencing suppressed the proliferation in vitro and in vivo. In addition, we found that LINC00355 negatively regulated miR-195 in lung adenocarcinoma cells. Simultaneously, silencing LINC00355 by shRNA resulted in suppressed proliferation, colony formation and promoted cell cycle arrest and apoptosis via miR-195. Moreover, silencing LINC00355 by shRNA inhibited the cyclin E1 (CCNE1) gene expression via miR-195 in lung adenocarcinoma cells. Collectively, this study demonstrates the novel lncRNA LINC00355 in regulatory network of CCNE1 via miR-195 in lung adenocarcinoma, highlighting LINC00355 as a new target for the treatment of lung adenocarcinoma.  相似文献   

12.
Ribosomal protein S27a (RPS27a) could perform extra-ribosomal functions besides imparting a role in ribosome biogenesis and post-translational modifications of proteins. The high expression level of RPS27a was reported in solid tumors, and we found that the expression level of RPS27a was up-regulated in advanced-phase chronic myeloid leukemia (CML) and acute leukemia (AL) patients. In this study, we explored the function of RPS27a in leukemia cells by using CML cell line K562 cells and its imatinib resistant cell line K562/G01 cells. It was observed that the expression level of RPS27a was high in K562 cells and even higher in K562/G01 cells. Further analysis revealed that RPS27a knockdown by shRNA in both K562 and K562G01 cells inhibited the cell viability, induced cell cycle arrest at S and G2/M phases and increased cell apoptosis induced by imatinib. Combination of shRNA with imatinib treatment could lead to more cleaved PARP and cleaved caspase-3 expression in RPS27a knockdown cells. Further, it was found that phospho-ERK(p-ERK) and BCL-2 were down-regulated and P21 up-regulated in RPS27a knockdown cells. In conclusion, RPS27a promotes proliferation, regulates cell cycle progression and inhibits apoptosis of leukemia cells. It appears that drugs targeting RPS27a combining with tyrosine kinase inhibitor (TKI) might represent a novel therapy strategy in TKI resistant CML patients.  相似文献   

13.
目的观察博尔纳病病毒核蛋白(Borna disease virus p40,BDV p40)对大鼠海马源性神经干细胞(Neural stem cells,NSCs)增殖、存活、分化及ERK1/2信号通路的影响,揭示BDV引起神经精神疾病的部分发病机制。方法(1)分别用pEGFP—N1—p40及pEGFP—N1质粒转染NSCs,观察转染效率并鉴定BDVp40在NSCs中的表达。(2)实验设置3组:未转染组、pEGFP—N1空转对照组及pEGFP—N1—p40转染组,用CCK-8试剂盒、Brdu摄入实验及免疫组化分别检测细胞存活、增殖及分化为神经元、星型胶质细胞、少突胶质细胞的比例的变化,并经Western Blot检测ERK1/2磷酸化的改变。结果(1)成功建立表达BDVp40的NSCs模型;PCR结果显示只有pEGFP—N1-p40转染组细胞有BDVp40基因表达。(2)BDVp40抑制NSCs的存活、增殖,但对于转染后贴壁分化14d时3组细胞分化为神经元、星型胶质细胞、少突胶质细胞的比例未见显著差异。WesternBlot结果显示BDVp40下调了磷酸化ERK1/2在蛋白水平的表达。结论BDVp40抑制NSCs的存活、增殖,但是对NSCs的分化方向没有明显的影响。BDVp40有可能通过下调磷酸化ERK1/2活性对NSCs的存活、增殖起抑制作用。  相似文献   

14.
Obstructive sleep apnea (OSA) is closely associated with cancer progression and cancer-related mortality. N6-methyladenosine (m6A) is involved in the process of intermittent hypoxia (IH) promoting tumor progression. However, it is unclear how m6A regulates the development of lung adenocarcinoma under IH. In this study, we found that ALKBH5 was elevated in lung adenocarcinoma cells and subcutaneous tumors in mice under IH, which was associated with decreased m6A levels in these cells and tissues. Next, we knocked out ALKBH5 in a human lung adenocarcinoma cell line under IH, and we found that the proliferation and invasion of these cells were significantly inhibited. Mechanistic analysis showed that under IH, knockout of ALKBH5 in lung adenocarcinoma cells upregulated the level of m6A in Forkhead box M1 (FOXM1) mRNA and decreased the translation efficiency of FOXM1 mRNA, resulting in downregulation of the FOXM1 protein. The FOXM1 protein is elevated in lung adenocarcinoma cells and subcutaneous tumor tissues of mice under IH. By knocking out FOXM1 in lung adenocarcinoma cells under IH, proliferation and invasion of these cells were inhibited, and overexpression of FOXM1 partially restored the inhibition of growth and invasion of lung adenocarcinoma cells due to ALKBH5 knockout. Collectively, our findings demonstrate that the m6A demethylase ALKBH5 affects the proliferation and invasion of lung adenocarcinoma cells under IH by downregulating m6A modification on FOXM1 mRNA and by promoting FOXM1 expression.  相似文献   

15.
ABSTRACT

Effect of miR-216a-3p on lung cancer hasn’t been investigated. Here, we explored its effects on lung cancer. MiR-216a-3p expression in lung cancer tissues and cells was detected by RT-qPCR. The target gene of miR-216a-3p was predicted by bioinformatics and confirmed by luciferase-reporter assay. After transfection, cell viability, migration, invasion, proliferation, and apoptosis were detected by MTT, scratch, transwell, colony formation, and flow cytometry. The expressions of COPB2 and apoptosis-related factors were detected by RT-qPCR or western blot. MiR-216a-3p was low-expressed and COPB2 was high-expressed in lung cancer tissues and cells. MiR-216a-3p targeted COPB2 and regulated its expression. MiR-216a-3p inhibited lung cancer cell viability, migration, invasion, and proliferation, while promoted apoptosis. Effect of miR-216a-3p on lung cancer was reversed by COPB2. MiR-216a-3p regulated proliferation, apoptosis, migration, and invasion of lung cancer cells via targeting COPB2.  相似文献   

16.
In this study, we examined the biological functions of Gab1 in erythropoietin receptor (EPOR)-mediated signaling in vivo. Knockdown of Gab1 by the introduction of the Gab1 siRNA expression vector into F-36P human erythroleukemia (F-36P-Gab1-siRNA) cells resulted in a reduction of cell proliferation and survival in response to EPO. EPO-induced activation of Erk1/2 but not of Akt was significantly suppressed in F-36P-Gab1-siRNA cells compared with mock-transfected F-36P cells. The co-immunoprecipitation experiments revealed an EPO-enhanced association of Gab1 with the Grb2–SOS1 complex and SHP-2 in F-36P cells. A selective inhibitor of phosphatidylinositol 3-kinase (PI3K) LY294002 and short interfering RNA (siRNA) duplexes targeting the p85 regulatory subunit of PI3K (p85-siRNA) independently suppressed tyrosine phosphorylation of Gab1; its association with Grb2, SHP-2 and p85; and the activation of Erk in EPO-treated F-36P cells. LY294002 inhibited EPO-induced tyrosine phosphorylation of Gab1 and its association with Grb2 in human primary EPO-sensitive erythroid cells. The co-immunoprecipitation experiments using the Jak inhibitor AG490 or siRNA duplexes targeting Jak2 and in vitro binding experiments demonstrated that Jak2 regulated Gab1-mediated Erk activation through tyrosine phosphorylation of Gab1. Taken together, these results suggest that Gab1 couples PI3K-mediated EPO signals with the Ras/Erk pathway and that Gab1 plays an important role in EPOR-mediated signal transduction involved in the proliferation and survival of erythroid cells.  相似文献   

17.
Wnt‐signaling pathway is implicated in pancreatic development and functional regulation of mature beta‐cells. Wnt3a/Wnt pathway activation expands islet cell mass in vitro by increasing proliferation and decreasing apoptosis of beta‐cells, thereby enhancing its function. However, the signaling pathways that mediate these effects remain unknown. By using a clonal beta‐cell line (NIT‐1), we examined the role of IRS2/PI3K in the mediation of Wnt3a‐stimulated beta‐cell growth. Real‐time PCR and Western blot were employed to investigate the activity of Wnt/β‐catenin and IRS2/PI3K signaling. Proliferation of NIT‐1 cells was assessed by BrdU incorporation, and apoptosis was quantitatively determined by TUNEL and flow cytometry (FCM). Dkk1, an inhibitor of Wnt signaling, and wortmannin, an inhibitor of PI3K, were also used. Results showed that Wnt3a rapidly activated Wnt/β‐catenin signaling, promoted IRS2 expression and Akt phosphorylation in NIT‐1 cells. These effects were completely abrogated by Dkk1 or partially eliminated by wortmannin. Wnt3a also promoted NIT‐1 cell proliferation, inhibited cytokine‐induced beta‐cell apoptosis, and increased insulin secretion. Both of these effects were also eliminated by Dkk1 or wortmannin. Our results demonstrated that Wnt3a regulates proliferation, apoptosis and enhances function of pancreatic NIT‐1 beta cells via activation of Wnt/β‐catenin signaling, involving crosstalk with IRS2/PI3K signaling, with the effect of Wnt signaling on beta‐cells also being IRS2/PI3K/AKT dependent. J. Cell. Biochem. 114: 1488–1497, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
19.
Circular RNAs (circRNAs) were recently reported to be involved in the pathogenesis of Non-small cell lung cancer (NSCLC), however, the molecular mechanisms of circRNAs in cell proliferation, invasion and TKI drug resistance remain largely undetermined. Here, we identified hsa_circ_0004015 was upregulated in NSCLC tissues, and was associated with the poor overall survival rate of NSCLC patients. Knockdown of hsa_circ_0004015 significantly decreased cell viability, proliferation, and invasion, whereas overexpression exhibited opposed effects in vivo and in vitro. Furthermore, hsa_circ_0004015 could enhance the resistance of HCC827 to gefitinib. In mechanism, hsa_circ_0004015 acted as a sponge for miR-1183, and PDPK1 was revealed to be target gene of miR-1183. Subsequently, functional assays illustrated that the oncogenic effects of hsa_circ_0004015 was attributed to the regulation of miR-1183/PDPK1 axis. In conclusion, circ_0016760/miR-1183/PDPK1 signaling pathway might play vital roles in the tumorigenesis of NSCLC.  相似文献   

20.
Wang Y  Zhang M  Tan Y  Xiang Y  Liu H  Qu F  Qin L  Qin X 《Cell biology international》2007,31(12):1495-1500
Airway re-modelling in asthma usually results in an irreversible weakness of pulmonary ventilation, however, its initiating or controlling mechanism remains unclear. In this study, we hypothesize that signal communication between airway epithelial cells and sub-mucosal fibroblast cells may play an important role in the maintenance of structure homeostasis in a physiologic condition and in initiation of airway remodelling in a stressed condition. To test the hypothesis, a co-cultured system of human bronchial epithelial cells (BEC) and human lung fibroblasts (HLF) were designed to observe the effects of BEC, in the normal state or in a BRS-3 activated state, on the proliferation and collagen synthesis of HLF. The results showed that the proliferation activities of both BEC and HLF inhibited each other under the normal state. BRS-3-activated BEC can transform the reciprocal inhibition into promoting effects. The secretion of TGF-beta1 increased and the synthesis of PGE2 decreased from BRS-3-activated BEC, which were correlated with the proliferation and collagen synthesis of HLF. The proliferation activities of HLF were weakened by co-culture with TGF-beta1 antisense oligonucleotides (ASO) treated BEC. It was concluded that, in the normal state, BEC inhibits the activities of fibroblasts through release of PGE2 to maintain the airway homeostasis; however when stressed, for example by BRS-3 activation, BEC promote the activities of fibroblasts mediated by TGF-beta1, thereby facilitating the airway re-modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号