首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
A protocol for Leuconostoc nos plasma membrane isolation, which was improved for studying lipidic and proteic constitution according to growth conditions, allowed us to determine some kinetic properties of membrane-bound ATPase activity: optimum pH, 5.6; the Michaelis constant (K m) for ATP, 1.1 mm; Mg2+-dependence. L. nos membrane-bound ATPase activity was regulated according to cell growth phase, growth medium and extracellular conditions. The regulation mode of this activity was not investigated but it was very rapid: differences in level of activity were observed in less than 1 h when extracellular pH was modified or when ethanol was added. Wine induced a large decrease in ATPase activity of L. nos. This may explain the loss of cell viability after direct inoculation into wine, when malolactic fermentation was not spontaneously obtained.  相似文献   

2.
Summary An intracellular enzyme, d(—)--hydroxybutyric acid dehydrogenase involved in an intracellular poly-d(—)--hydroxybutyric acid degredation was isolated from a facultative methylotrophic bacterium, Pseudomonas 135, grown on methanol as a sole carbon and energy source. This enzyme was partially purified to 11.6-fold by ammonium sulphate fractionation and a dye-affinity chromatography. The enzyme catalysed simultaneously the oxidation of d(—)--hydroxybutyric acid (D-HB) and the reduction of acetoacetate. The optimum pH was 8.5 for the oxidation reaction and 5.5–6.0 for the reduction reaction, and the enzyme was stable for 2 weeks at — 20° C. The K m values for oxidation and reduction reactions were determined as 1.84 mm for D-HB, 0.244 mm for NAD+, 0.319 mm for acetoacetate and 0.032 mm for NADH, respectively. It was also found that d-lactate and NADH significantly inhibited the oxidation reaction by competitive inhibition, and acetoacetate by non-competitive inhibition, respectively. The inhibition constants were determined as 1.49 mm for d-lactate, 0.196 mm for NADH and 1.82 mm for acetoacetate, respectively. According to an experiment with resting cells, it seemed that the enzyme was constitutive. Correspondence to: J. M. Lebeault  相似文献   

3.
Summary A strain of Escherichia coli exhibiting reduced activity of the periplasmic enzyme acid phosphoanhydride phosphohydrolase (pH 2.5 acid phosphatase) was isolated. The mutation designated appA1 was located at 22.5 min on the E. coli genetic map. Acid phosphatase purified from an appA transductant showed less than ten percent of the specific activity of an isogenic appA +strain. The mutant enzyme was highly thermolabile and its Km for paranitrophenyl phosphate was increased about 20-fold. The mutant protein cross-reacted with antibody to the wild-type enzyme and had the same molecular weight and concentration in extracts as the wild-type enzyme. These findings strongly suggest that appA is the structural gene of the acid phosphatase.Abbreviations PNPP paranitrophenyl phosphate - cAMP 3-5-cyclic adenosine monophosphate - Nitrosoguanidine N-methyl-N'-nitro-N-nitrosoguanidine - TCY tetracycline - KAN kanamycin - STR streptomycin  相似文献   

4.
The activity of glutamine synthetase (GS) was investigated during culture development of Bacillus polymyxa CN 2219 and its asporogenous mutant deficient in protease production. At 28°C, temperature permissive for sporulation, the glutamine synthetase activity was found to decline in the wild type cells which acquire the competence for sporulation. This decline was not observed in the asporogenous mutant. Incubation at 37°C (temperature non permissive) suppressed sporulation in the wild type and maintained glutamine synthetase activity. The involvement of glutamine synthetase in the repression of sporulation was further confirmied by the action of l-methionine sulfoximine a specific inhibitor of glutamine synthetase, which overcomes the catabolite repression by ammonium and induces sporulation. Intracellular proteases were measured as early markers of the initiation of sporulation and were found to be induced during sporulation.Abbreviations GS glutamine synthetase - MSO l-methionine sulfoximine - GYS glucose-yeast extract-salts - GT -glutamyltransferase - PMSF phenylmethylsulfonylfluoride  相似文献   

5.
Summary dl-Malic acid grown cells of Candida sphaerica (anamorph of Kluyveromyces marxianus) formed a saturable transport system that mediated accumulative transport of l(-)malic acid with the following kinetic parameters at pH 5.0: V max, 0.44 nmol l(-)malate·s-1 per milligram dry weight; K m ,0.1 mM l(-)malate. Initial uptake of the acid was accompanied by disappearance of extracellular protons, the rates of which followed Michaelis-Menten kinetics as a function of the acid concentration. Variation with extracellular pH of the K m values, calculated either as the concentrations of anions or of undissociated acid, pointed to anions as the transported form. Furthermore, accumulated free acid suffered rapid efflux after the addition of the protonophore carbonylcyanide-M-chlorophenyl-hydrazone (CCCP). These results suggested that the transport system was a dicarboxylate-proton symporter. The system was inducible and was subject to glucose repression. Succinic, fumaric, -ketoglutaric, oxaloacetic and d-malic acid, but not maleic, malonic, oxalic nor l(+)-tartaric acid, apparently used the same transport system since they acted as competitive inhibitors of l(-)malic acid transport and induced proton movements that followed Michaelis-Menten kinetics. Experiments with glucose-repressed cells showed that undissociated dicarboxylic acid (measured with labelled succinic acid) entered the cells slowly by simple diffusion. The permeability of the cells for undissociated acid increased exponentially with pH, the diffusion constant increasing 100-fold between pH 3.5 and 6.0.  相似文献   

6.
Summary The regulation of extracellular amylase production by the basidiomycetous yeast Filobasidium capsuligenum CCY 64-5-1 was characterized using growing and resting cells. A basal level of amylolytic activity was produced with various carbon sources including glucose. Amylase secretion was repressed by glucose and, more severely, by 2-deoxy-d-glucose, whereas compounds with -1,4-linked glucose, such as methyl glucoside, maltose, -cyclodextrin and soluble starch, served as inducers. Repression was not relieved by exogenously added cAMP. The effects of several metabolic inhibitors on amylase secretion were studied. Following UV-mutagenesis a mutant strain (FC-5) capable of growing in a 2-deoxy-d-glucose supplemented corn starch medium was selected for further characterization. This strain produced more amylase, had acquired an increased resistance against repression by glucose, and retained a growth rate comparable to the wild type. FC-5 was also characterized by a reduced glucokinase activity and an increased hexokinase activity.  相似文献   

7.
Zusammenfassung Bei normalen erwachsenen Kaninchen und nach Durchschneidung des Plexus brachialis wurden im Rückenmark die Reaktionen für saure Phosphatase nach Gomori, Burstone und Barka-Anderson (nur im Normalzustand) und für 5-Nucleotidase nach Wachstein und Meisel bei pH 4,0 untersucht. Sowohl beim Normaltier als auch im Experiment zeigen alle vier Reaktionen gewisse Ähnlichkeiten in ihrer Lokalisation und ihrem Charakter. Es werden jedoch Unterschiede zwischen den drei sauren Phosphatase-reaktionen nach Gomori, Burstone und Barka-Anderson einerseits, sowie der bei saurem pH nachgewiesenen 5-Nucleotidase andererseits festgestellt. Die Resultate unterstützen die These von der Substratspezifität der untersuchten Enzyme und der Heterogenität der sauren Phosphatase.
Studies on the activity of acid phosphatase and 5-nucleotidase in the spinal cord of normal and plexus brachialis-sectioned rabbits by different histochemical methods
Summary The spinal cord (normal and after brachial plexus section) of adult rabbits was examined using histochemical reactions for acid phosphatase according to Gomori, Burstone, Barka and Anderson (only for normal rabbits), and 5-Nucleotidase according to Wachstein and Meisel at pH 4.0. The reactions show similarity in their specificity and localization in the normal and experimental animals, but they are some differences between Gomori, Burstone and Barka-Anderson reactions for acid phosphatase on one hand, and 5-Nucleotidase at acid pH on the other. The results give some evidence to support the thesis concerning the substrate specificity of the examined enzymes and the heterogeneity of acid phosphatase.
  相似文献   

8.
Cloned penicillin G acylase (PGA) from Escherichia coli ATCC 11105 was mutagenized in vivo using N-methyl-N-nitrosoguanidine. Mutants of PGA were selected by their ability to allow growth of the host strain E. coli M8820 with the new substrates phenylacetyl--alanyl-l-proline (PhAc-Ala-Pro) phthalyl-l-leucine (Pht-Leu) or phthalylglycyl-l-proline (Pht-Gly-Pro) as sole source of proline and leucine respectively. PGA mutants were purified and immobilized onto spherical methacrylate (G-gel). The immobilized form of mutant PGA selected with (PhAc-gbAla-Pro) hydrolyzed 95% of 9 mmol penicillin G 30% faster than wild-type PGA using the same specific activities. The specific activity of the soluble enzyme was 2.7-fold, and inhibition by phenylacetic acid was halved. Immobilized PGA mutant selected with Pht-Gly-Pro hydrolyzed penicillin G 20% faster than wild-type PGA. The K m of the soluble enzyme was increased 1.7-fold. Furthermore, the latter two mutants were also 3.6-fold more stable at 45° C than wild-type PGA. The specific activity of the mutant selected with Pht-Leu was 6.3-fold lower, and inhibition by phenylacetic acid was increased 13-fold.  相似文献   

9.
A new phytase (APPA) with optimum pH 2.5—substantially lower than that of most of microbial phytases (pH 4.5–6.0)—was cloned from Yersinia frederiksenii and heterologously expressed in Escherichia coli. Containing the highly conserved motifs typical of histidine acid phosphatases, APPA has the highest identity (84%) to the Yersinia intermedia phytase (optimal pH 4.5), a member of histidine acid phosphatase family. Based on sequence alignment and molecular modeling of APPA and related phytases, APPA has only one divergent residue, Ser51, in close proximity to the catalytic site. To understand the acidic adaptation of APPA, five mutants (S51A, S51T, S51D, S51K, and S51I) were constructed by site‐directed mutagenesis, expressed in E. coli, purified, and characterized. Mutants S51T and S51I exhibited a shift in the optimal pH from 2.5 to 4.5 and 5.0, respectively, confirming the role of Ser51 in defining the optimal pH. Thus, a previously unrecognized factor other than electrostatics—presumably the side‐chain structure near the active site—contributes to the optimal pH for APPA activity. Compared with wild‐type APPA, mutant S51T showed higher specific activity, greater activity over pH 2.0–5.5, and increased thermal and acid stability. These properties make S51T a better candidate than the wild‐type APPA for use in animal feed. Biotechnol. Bioeng. 2009;103: 857–864. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Summary Suspensions of log phase cells ofRhodospirillum rubrum at pH 5.5 show a light-induced decrease in the pH of the medium which is reversed during the subsequent dark period. The velocity and magnitude of the pH change were the same whether the cells were bubbled with air, CO2-free air or N2 during experimentation. The pH response is temperature dependent. Phenazine methyl sulfate (PMS) at concentrations above 0.05mm stimulates the light-induced pH change. PMS at 1mm gives a 2-fold increase in the initial rate upon illumination and a 1.5-fold increase in the total change in pH after 2 min of illumination. The inhibition of the proton transport by 10 g/ml antimycin A or 20 m 2-n-heptyl-4-hydroxyquinoline-N-oxide can be partially relieved by PMS. However, inhibition of the light-induced proton transport with 0.5mm 2,4-dinitrophenol or 3 m carbonylcyanide-m-chlorophenylhydrazone (CCCP) cannot be overcome by addition of PMS. Valinomycin, at a concentration of 3 m, caused a slight stimulation of the light-induced proton transport in the presence of 200mm KCl. The inhibition of proton transport by 3 m CCCP was partially relieved with 3 m valinomycin in the presence of 200mm KCl, but the antibiotic was without effect when the cells were suspended in 200mm NaCl. The results are discussed in terms of current theories of the action of PMS, antimycin A, valinomycin, and uncouplers on the light-induced electron flow and photophosphorylation inR. rubrum.  相似文献   

11.
Summary Acid phosphatase isoenzymes of Chlamydomonas reinhardii were investigated by isoelectric focusing in polyacrylamide gel systems. In this paper we describe in detail an original method for isoelectric focusing of acid phosphatases extracted from wildtype and acid phosphatase-lacking mutant algae, obtained from Laboratoire de Génetique of University of Liège. Three isoenzymes can be separated from the buffer-soluble components of these cells. An additional isoenzyme type can be visualized using the nonionic detergent NP40 as solubilizer. We conclude that these four isoenzymes are releated to the structural gene of the soluble constitutive acid phosphatase, which was shown by their appearance in P 2 and their total absence in mutant P a. The pl values of soluble constitutive acid phosphatase isoenzymes range between pH 5.2 and 6.2. As a result of treatment with NP40 the extracts from both wild-type and mutant lines contain two additional active phosphatase forms which can be characterized by their high heat resistance and low pI values. These enzymes are fully active using either -naphthyl phosphate or different acetate esters as substrates.  相似文献   

12.
In order to improve a natural enzyme so as to fit industrial purposes, we have applied experimental evolution techniques comprised of successive in vitro random mutagenesis and efficient screening systems. Subtilisin BPN, a useful alkaline serine protease, was used as the model enzyme, and the gene was cloned to an Escherichia coli host-vector system. Primary mutants with reduced activities of below 80% of that of the wild type were first derived by hydroxylamine mutagenesis directly applied to subtilisin gene DNA, followed by screening of clear-zone non-forming transformant colonies cultured at room temperature on plates containing skim-milk. Then, secondary mutants were derived from each primary mutant by the same mutagenic procedure, but screened by detecting transformant colonies incubated at 10°C with clear zones that were greater in size than that of the wild type. One such secondary mutant, 12–12, derived from a primary mutant with 80% activity, was found to gain 150% activity (k cat/K m value) of the wild-type when the mutant subtilisin gene was subcloned to a Bacillus subtilis host-vector system, expressed to form secretory mutant enzyme in the medium, and the activity measured using N-succinyl-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate. When N-succinyl-l-Ala-l-Ala-l-Pro-l-Leu-p-nitroanilide was used, 180% activity was gained. Genetic analysis revealed that the primary and secondary mutations corresponded to D197N and G131D, respectively. The activity variations found in these mutant subtilisins were discussed in terms of Ca2+-binding ability. The thermostability was also found to be related to the activity.  相似文献   

13.
A phytase from Escherichia coli, AppA, has been the target of protein engineering to reduce the amount of undigested phosphates from livestock manure by making phosphorous from phytic acid available as a nutrient. To understand the contribution of each amino acid in the active site loop to the AppA activity, alanine and glycine scanning mutagenesis was undertaken. The results of phytase activity assay demonstrated loss of activity by mutations at charged residues within the conserved motif, supporting their importance in catalytic activity. In contrast, both conserved, non-polar residues and non-conserved residues tended to be tolerant to Ala and/or Gly mutations. Correlation analyses of chemical/structural characteristics of each mutation site against mutant activity revealed that the loop residues located closer to the substrate have greater contribution to the activity of AppA. These results may be useful in efficiently engineering AppA to improve its catalytic activity.

Abbreviations: AppA: pH 2.5 acid phosphatase; CSU: contacts of structural units; HAPs: histidine acid phosphatases; SASA: solvent accessible surface area; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SSM: site-saturation mutagenesis; WT: wild type  相似文献   


14.
Two Leuconostoc oenos mutant strains unable to metabolize malic acid were differentiated by [U-14C]-labelled L-malate transport assays into a malolactic-enzyme-deficient mutant and a malate-transport-defective mutant. A mathematical analysis of the data from L-malic acid uptake at three pH values (5.2, 4.5, and 3.2) in the malolactic-enzyme-deficient strains suggest two simultaneous uptake mechanisms, presumably a carrier-mediated transport and a passive diffusion for the anionic and the undissociated forms of the acid, respectively. The apparent affinity constant (K m t) and the maximal rate (V m t) values for L-malate active transport were, 12 mM and 43 mol L-malate·mg–1·s–1, respectively. Active transport was constitutive and strongly inhibited by protonophores and by ATPase inhibitors. L-Lactic acid appeared to inhibit L-malic acid transport, suggesting an L-lactate/L-malate exchange. At pH values of 4.5 or above, the passive diffusion of L-malic acid was negligible. However, at pH 3.2, the mean pH of wine, the permeability of the cells to the undissociated acid by simple diffusion could represent more than 50% of total L-malic acid uptake, with a diffusion constant (K D) of 0.1 s–1. Correspondence to: C. Divies  相似文献   

15.
A kinetic study of the -glucosidase-catalysed reaction of a commercial cellulase preparation from Trichoderma viride is described. The K m and V max values of the -glucosidase system were: (a) 0.5 mm and 6.6 mol/min, respectively, using p-nitrophenyl -d-glucopyranoside (pNPG) as substrate; and (b) 2.5 mm and 8.1 mol/min, respectively, using cellobiose as subtrate. The glucose effect on initial reaction velocity agrees with a mixed-inhibition pattern. The inhibition constant (K i) values were, 0.53 and 0.39 mm with nNPG and cellobiose as substrates, respectively. The temperature and pH optima were determined. Correspondence to: A. Romeu  相似文献   

16.
Phytase activity in rabbit cecal bacteria   总被引:1,自引:0,他引:1  
The presence of phytase activity was demonstrated in 26 strains of rabbit cecal bacteria. In 25 strains a low phytase activity, 0.10–0.62 μmol phosphate released per min per mg protein, was found. High activity (2.61 μmol/min per mg protein) was found in the strain PP2 identified as Enterococcus hirae. Phytase activity was cell-associated, being higher in the cell extract than in the cell walls. Extracellular phytase activity and cell-associated phosphatase activity were not detected. Phytase activity was optimal around pH 5.0, which is below the physiological cecal pH range. The K m determined using the Lineweaver-Burk plot was 0.19 μmol/mL. Cations Fe3+, Cu2+ and Zn2+ at 0.5 mmol/L decreased phytase activity in sonicated cells of E. hirae by 99.4, 90.7 and 96.5 %, respectively. In contrast, Mg2+ increased activity by 11.0 %. Characteristics of E. hirae phytase (pH optimum, K m, cation sensitivity) were similar to those of other bacterial phytases reported in the literature. Other bacteria with a high phytase activity may be present in the rabbit cecum but remain to be identified.  相似文献   

17.
Summary The distribution of acid phosphatase, -n-acetylglucosaminidase, -glucuronidase, and acid -galactosidase was studied in mm. extensor digitorum longus, soleus, and diaphragm of rats. Using the technic of semipermeable membranes activities of these enzymes were demonstrated beside cells of the interstitial tissue in muscle fibers themselves as well. Acid phosphatase displayed the highest activity which appeared in many small dots dispersed in the fiber. The activity of acid phosphatase was about 1.2 x higher in the m. soleus than in the m. extensor digitorum longus. In the latter muscle a somewhat higher activity was often found in muscle fibers displaying a higher staining for NADH tetrazolium reductase. The activity of -n-acetylglucosaminidase was slightly lower, that of -glucuronidase very weak but still discernible. The activity of acid -galactosidase was not ascertained in the majority of fibers. The ratio of activities measured in an area of the same size in cells of the interstitial tissue and in muscle fibers amounted in average to 2.6: 1 in the case of acid phosphatase, 2.5:1 in the case of -n-acetylglucosaminidase, 5.7: 1 in the case of -glucuronidase, and 44.3:1 in the case of acid -galactosidase. The importance of the histochemical technic in studies concerned with acid hydrolases in striated muscle fibers in normal and pathological conditions is pointed out.  相似文献   

18.
Summary ATP-inhibited potassium channels (K(ATP)) were studied in excised, inside-out patches from cultured adult mouse pancreatic -cells and HIT cells. In the absence of ATP, ADP opened K(ATP) channels at concentrations as low as 10 m and as high as 500 m, with maximal activation between 10 and 100 m ADP in mouse -cell membrane patches. At concentrations greater than 500 m, ADP inhibited K(ATP) channels while 10 mm virtually abolished channel activity. HIT cell channels had a similar biphasic response to ADP except that more than 1 mm ADP was required for inhibition. The channel opening effect of ADP required magnesium while channel inhibition did not. Using creatine/creatine phosphate solutions with creatine phosphokinase to fix ATP and ADP concentrations, we found substantially different K(ATP)-channel activity with solutions having the same ATP/ADP ratio but different absolute total nucleotide levels. To account for ATP-ADP competition, we propose a new model of channel-nucleotide interactions with two kinds of ADP binding sites regulating the channel. One site specifically binds MgADP and increases channel opening. The other, the previously described ATP site, binds either ATP or ADP and decreases channel opening. This model very closely fits the ADP concentration-response curve and, when incorporated into a model of -cell membrane potential, increasing ADP in the 10 and 100 m range is predicted to compete very effectively with millimolar levels of ATP to hyperpolarize -cells.The results suggest that (i) K(ATP)-channel activity is not well predicted by the ATP/ADP ratio, and (ii) ADP is a plausible regulator of K(ATP) channels even if its free cytoplasmic concentration is in the 10–100 m range as suggested by biochemical studies.We would like to thank Mr. Louis Stamps for expert technical assistance and Dr. Wil Fujimoto and Ms. Jeanette Teague for generously providing HIT cells obtained from Dr. Robert Santerre at Eli Lilly. We would also like to thank Dr. Michel Vivaudou for providing the program ALEX. Support was provided by the NIH and the Department of Veterans Affairs.  相似文献   

19.
Summary Net K movements in reconstituted human red cell ghosts and the resealing of ghosts to cations after osmotic hemolysis of red cells have been studied as functions of the free Ca ion concentration. The Ca-dependent specific increase in K permeability was shown to be mediated by a site close to the internal surface of the membrane with an apparent dissociation constant at pH 7.2 for Ca (K D1) of 3–5×10–7 m, for Sr of 7×10–6 m. Ba and Mg did not increase the K-permeability of the membrane but inhibited the Ca-mediated permeability changes.K D1 decreased in a nonlinear fashion when the pH was increased from 6.0 to 8.5. Two different pK values of this membrane site were found at pH 8.3 and 6.3. The Ca-activated net K efflux into a K-free medium was almost completely inhibited by an increase in intracellular Na from 4 to 70mm. Extracellular K antagonized this Na effect. Changes in the extracellular Na (0.1–140mm) or K(0.1–6mm) concentrations had little effect and did not changeK D1. The Ca-stimulated recovery of a low cation permeability in ghost cells appeared to be mediated by a second membrane site which was accessible to divalent cations only during the process of hemolysis in media of low ionic strength. The apparent dissociation constant for Ca at this site (K D2) varied between 6×10–7 and 4×10–6 m at pH 7.2. Mg, Sr, and Ba could replace Ca functionally. The selectivity sequence was Ca>Sr>Ba>Mg.K D2 was independt on the pH value in the range between 6.0 and 8.0. Hill coefficients of 2 were observed for the interaction of Ca with both membrane sites suggesting that more than one Ca ion is bound per site. The Hill coefficients were affected neither by the ion composition nor by the pH values of the intra- and extracellular media. It is concluded that two different pathways for the permeation of cations across the membrane are controlled by membrane sites with high affinities for Ca: One specific for K, one unspecific with respect to cations. The K-specific channel has properties similar to the K channel in excitable tissues.  相似文献   

20.
Ap-nitrophenyl--d-maltoside-hydrolyzing -glucosidase was purified and characterized from aBacillus subtilis high-temperature growth transformant (H-17), previously generated by transformation ofBacillus subtilis 25S withBacillus caldolyticus C2 DNA. The enzyme showed endo-oligo-1,4-glucosidase activity owing to its hydrolysis of linear malto-oligosaccharides to maltose and glucose, and pullulan hydrolase activity owing to its hydrolysis of pullulan to glucose, maltose, and (iso)panose. The enzyme was inactive againstp-nitrophenyl--d-glucopyranoside, maltose, isomaltose, isomaltotriose, and panose, but slightly hydrolyzed starch. The native structure of the enzyme is a dimer composed of two identical subunits of Mr 55,000. The enzyme had a pI of 4.8, pH optimum of 7.5, was 80% inhibited by 5 mM Tris-HCl, and had a Km value of 1.46 mM for the chromogenic substratep-nitrophenyl--d-maltoside. The enzyme showed optimal activity between 65° and 68°C, and retained 100% of initial activity after incubation at 65°C for 1 h. A minimum concentration of 0.02% 2-mercaptoethanol or 0.005 mM EDTA was required for thermostability. These physiochemical characteristics are similar to those for the previously described corresponding enzyme fromB. subtilis 25S, except that the same enzyme from the transformed strain was thermolabile. Amino acid analysis showed higher levels of alanine, glycine, and proline residues in the H-17 enzyme, compared with 25S. This may account for the enhanced thermostability, owing to increased internal hydrophobicity.Florida Agricultural Experiment Station Journal Series No. R-01123.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号