首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using a direct conjugate of urokinase and ferritin, the binding has been followed at the plasma membrane and the internalization of urokinase into BALB/C-3T3 fibroblasts, cultured in plasminogen-free conditions. At 0° C, the conjugate was observed bound on both coated and uncoated cell surface regions as singlets, and small and large clusters. No binding was observed in the presence of excess native urokinase. The binding was impaired by preincubation of the conjugate with a competitive inhibitor of the catalytic site, suggesting an interaction between the receptor and the catalytic site of the enzyme.Within 1 min at 37° C, urokinase clustered on coated regions of the plasma membrane. At 5 min after warming, ferritin was found on deeply indented coated pits and in both coated and uncoated vesicles close to the cell surface. By 10 min at 37° C, ferritin particles were present in uncoated endosomes and in multivesicular bodies in the Golgi area. Within 10 min, the receptors on the surface strongly decreased. New receptors were observed on the membrane after 20 min at 37° C. At this time, ferritin was observed both in endosomes or multivesicular bodies and in vesicles close to the plasma membrane.  相似文献   

2.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

3.
At 4 degrees C transferrin bound to receptors on the reticulocyte plasma membrane, and at 37 degrees C receptor-mediated endocytosis of transferrin occurred. Uptake at 37 degrees C exceeded binding at 4 degrees C by 2.5-fold and saturated after 20-30 min. During uptake at 37 degrees C, bound transferrin was internalized into a trypsin- resistant space. Trypsinization at 4 degrees C destroyed surface receptors, but with subsequent incubation at 37 degrees C, surface receptors rapidly appeared (albeit in reduced numbers), and uptake occurred at a decreased level. After endocytosis, transferrin was released, apparently intact, into the extracellular space. At 37 degrees C colloidal gold-transferrin (AuTf) clustered in coated pits and then appeared inside various intracellular membrane-bounded compartments. Small vesicles and tubules were labeled after short (5-10 min) incubations at 37 degrees C. Larger multivesicular endosomes became heavily labeled after longer (20-35 min) incubations. Multivesicular endosomes apparently fused with the plasma membrane and released their contents by exocytosis. None of these organelles appeared to be lysosomal in nature, and 98% of intracellular AuTf was localized in acid phosphatase-negative compartments. AuTf, like transferrin, was released with subsequent incubation at 37 degrees C. Freeze-dried and freeze-fractured reticulocytes confirmed the distribution of AuTf in reticulocytes and revealed the presence of clathrin-coated patches amidst the spectrin coating the inner surface of the plasma membrane. These data suggest that transferrin is internalized via coated pits and vesicles and demonstrate that transferrin and its receptor are recycled back to the plasma membrane after endocytosis.  相似文献   

4.
Using the direct conjugate of epidermal growth factor (EGF) and horseradish peroxidase, we have followed the entry of EGF into KB (human carcinoma) cells. EGF initially was found bound diffusely to the entire cell surface at 4 degrees C; on warming to 37 degrees C, EGF was found clustered in clathrin-coated pits on the plasma membrane in 1 min or less. Within 1-2 min at 37 degrees C, EGF began to accumulate in receptosomes within the cell and remained there for up to 10 min. At 10-13 min after warming to 37 degrees C, EGF was found in thin reticular membranous elements of the Golgi system, as well as concentrated in the clathrin-coated pits present on these membranes. By 15 min after warming, EGF began to be delivered to lysosomes located near the Golgi system. These findings suggest that clathrin-coated pits in the Golgi reticular system accumulate EGF before delivery to lysosomes.  相似文献   

5.
Tim Brac 《Tissue & cell》1983,15(6):873-884
Analysis of the time course of highly cationic ferritin uptake by fat body cells has shown that the tracer bound to the plasma membrane and was pinocytosed by coated vesicles. The first sites of intracellular accumulation were multivesicular bodies which became filled with ferritin between 30-60 min after cells were exposed to the tracer. At no time during the experiments were any parts of the Golgi complex labeled by the tracer. By 60 min, the ferritin was increasingly found in lamellar bodies. The different types of 'light' and 'dark' multivesicular bodies suggest that lamellar bodies form from multivesicular bodies as they fill with tracer. The occurrence of lamellar bodies in many different cell types suggests an important role in membrane dynamics.  相似文献   

6.
The binding and subsequent intracellular processing of transferrin and transferrin receptors was studied in A431 cells using 125I-transferrin and a monoclonal antibody to the receptor (ATR) labeled with 125I and gold colloid. Using 125I-transferrin we have shown that, whereas at 37 degrees C uptake proceeded linearly for up to 60 min, most of the ligand that was bound was internalized and then rapidly returned to the incubation medium undegraded. At 37 degrees C, the intracellular half- life of the most rapidly recycled transferrin was 7.5 min. 125I-ATR displayed the same kinetics of uptake but following its internalization at 37 degrees C, it was partially degraded. At 22 degrees C and below, the intracellular degradation of 125I-ATR was selectively inhibited and as a result it accumulated intracellularly. Electron microscopy of conventional thin sections and of whole-cell mounts was used to follow the uptake and processing of transferrin receptors labeled with ATR- gold colloid complexes. Using a pulse-chase protocol, the intracellular pathway followed by internalized ATR gold-receptor complexes was outlined in detail. Within 5 min at 22 degrees C the internalized complexes were transferred from coated pits on the cell surface to a system of narrow, branching cisternae within the peripheral cytoplasm. By 15 min they reached larger, more dilated elements that, in thin section, appeared as irregular profiles containing small (30-50-nm diam) vesicles. By 30 min, the gold complexes were located predominantly within typical spherical multivesicular bodies lying in the peripheral cytoplasm, and by 40-60 min, they reached a system of cisternal and multivesicular body elements in the juxtanuclear area. At 22 degrees C, no other compartments became labeled but if they were warmed to 37 degrees C the gold complexes were transferred to lysosome- like elements. Extracting ATR-gold complexes with Triton X after a 30- min chase at 22 degrees C and purifying them on Sepharose-transferrin indicated that the internalized complexes remained bound to the transferrin receptor during their intracellular processing.  相似文献   

7.
Receptor-mediated transport of heme by hemopexin in vivo and in vitro results in catabolism of heme but not the protein, suggesting that intact apohemopexin recycles from cells. However, until now, the intracellular transport of hemopexin by receptor-mediated endocytosis remained to be established. Biochemical studies on cultured human HepG2 and mouse Hepa hepatoma cells demonstrate that hemopexin is transported to an intracellular location and, after endocytosis, is subsequently returned intact to the medium. During incubation at 37 degrees C, hemopexin accumulated intracellularly for ca. 15 min before reaching a plateau while surface binding was saturated by 5 min. No internalization of ligand took place during incubation at 4 degrees C. These and other data suggest that hemopexin receptors recycle, and furthermore, incubation with monensin significantly inhibits the amount of cell associated of heme-[125I]hemopexin during short-term incubation at 37 degrees C, consistent with a block in receptor recycling. Ammonium chloride and methylamine were less inhibitory. Electron microscopic autoradiography of heme-[125I]hemopexin showed the presence of hemopexin in vesicles of the classical pathway of endocytosis in human HepG2 hepatoma cells, confirming the internalization of hemopexin. Colloidal gold-conjugated hemopexin and electron microscopy showed that hemopexin bound to receptors at 4 degrees C is distributed initially over the entire cell surface, including microvilli and coated pits. After incubation at 37 degrees C, hemopexin-gold is located intracellularly in coated vesicles and then in small endosomes and multivesicular bodies. Colocalization of hemopexin and transferrin intracellularly was shown in two ways. Radioiodinated hemopexin was observed in the same subcellular compartment as horseradish peroxidase conjugates of transferrin using the diaminobenzidine-induced density shift assay. In addition, colloidal gold derivatives of heme-hemopexin and diferric transferrin were found together in coated pits, coated vesicles, endosomes and multivesicular bodies. Therefore, hemopexin and transferrin act by a similar receptor-mediated mechanism in which the transport protein recycles after endocytosis from the cell to undergo further rounds of intracellular transport.  相似文献   

8.
The fate of tetanus toxin bound to neuronal cells at 0 degree C was followed using an anti-toxin 125I-protein A assay. About 50% of surface-bound toxin disappeared within 5 min of warming cells to 37 degrees C. Experiments with 125I-toxin showed that much of this loss was due to dissociation of bound toxin into the medium. Some toxin was however rapidly internalised, and could be detected only by permeabilizing cells with Triton X-100 prior to assay. To investigate the mechanism of internalisation, tetanus toxin was adsorbed to colloidal gold. Toxin-gold was shown to be stable, and to recognise the same receptor(s) as free toxin. Quantitation of the distribution of toxin-gold particles bound to the cell body at 4 degrees C showed that it was concentrated in coated pits. After 5 min at 37 degrees C, toxin-gold appeared in coated vesicles, endosomes, and tubules. After 15 min, it was found largely in endosomes, and at 30 min in multivesicular bodies. The involvement of coated pits in internalisation of tetanus toxin, but not cholera toxin, was confirmed using the free toxins, anti-toxins, and protein A-gold. Toxin-gold also entered nerve terminals and axons via coated pits, accumulating in synaptic vesicles and intraaxonal uncoated vesicles, respectively.  相似文献   

9.
We have followed the internalization pathway of both epidermal growth factor (EGF) and its receptor in human epidermoid carcinoma (A431) cells. Using EGF conjugated with horseradish peroxidase and anti-receptor monoclonal antibodies (TL5 and EGFR1) coupled either directly or indirectly to colloidal gold we have identified an extensive elaboration of endosomal compartments, consisting of a peripheral branching network of tubular cisternae connected to vacuolar elements that contain small vesicles and a pericentriolar compartment consisting of a tubular cisternal network connected to multivesicular bodies. Immunocytochemistry on frozen thin sections using receptor-specific antibody-gold revealed that at 4 degrees C in the presence of EGF, receptors were mainly on the plasma membrane and, to a lesser extent, within some elements of both the peripheral and pericentriolar endosomal compartments. Upon warming to 37 degrees C there was an EGF-dependent redistribution of most binding sites, first to the peripheral endosome compartment and then to the pericentriolar compartment and lysosomes. Upon warming only to 20 degrees C the ligand-receptor complex accumulated in the pericentriolar compartment. Acid phosphatase cytochemistry identifies hydrolytic activity only within secondary lysosomes and trans cisternae of the Golgi stacks. Together these observations suggest that the prelysosomal endosome compartment extends to the pericentriolar complex and that the transfer of EGF receptor complexes to the acid phosphatase-positive lysosome involves a discontinuous, temperature-dependent step.  相似文献   

10.
Low density lipoproteins (LDL) were conjugated to colloidal gold for investigation of the ultrastructural aspects of binding and receptor-mediated internalization of LDL by cultured endothelial cells from the human umbilical artery and vein. The number of LDL receptors was increased by preincubation in lipoprotein-depleted serum. When the cells were incubated with LDL-gold particles for 2 h at 4 degrees C, the complexes were found in coated pits as well as in clusters attached to the plasma membrane. Small vesicles containing a few LDL-gold complexes appeared in the cytoplasm close to the plasma membrane when the cells were incubated with the conjugate for 5 min at 37 degrees C. After 15 min at 37 degrees C, larger vesicles with a pale matrix and membrane-orientated LDL-gold complexes were seen. After incubation for 30 min at 37 degrees C, colloidal gold particles were present in dense bodies. Quantification of the binding of LDL-gold complexes to the plasma membrane at 4 degrees C showed no differences between arterial and venous endothelial cells.  相似文献   

11.
The uptake mechanism of homologous IgG and immune complex, and the participation of coated vesicles in this process were studied in rat peritoneal macrophages. Peroxidase-antiperoxidase (PAP) immune complex produced in rat, and purified rat IgG adsorbed to gold particles (IgG-Au) were used as ligands. Freshly collected peritoneal macrophages were preincubated with the ligands at 4 degrees C, washed, warmed up to 37 degrees C, maintained in a serum-free culture medium for 5 sec to 30 min and subsequently fixed for electron microscopy. In the IgG-Au experiments, acid phosphatase reaction was also applied to identify lysosomes, and ruthenium red to trace membranes exposed to the extracellular space. At the end of the preincubation period PAP and IgG were found randomly distributed on the external surface of the plasma membrane. After warming up the cells to 37 degrees C, the ligands bound to the plasma membrane showed a tendency to move towards deep labyrinthic invaginations of the cell surface from where they were internalized via coated pits and coated vesicles. In the initial period, these structures seemed to be the primary carriers of the ligands. In the period between 5 and 10 min, ligands were concentrated in vacuoles (endosomes) located in the deeper cytoplasm, while after 30 min, they were present in large lysosome-like or multivesicular bodies, which were found to be acid phosphatase positive.  相似文献   

12.
We have prepared several electron and light microscopic labels of epidermal growth factor (EGF) to analyse the morphologic features of its binding and internalization by cultured cells. These include a ferritin conjugate of EGF, a covalent conjugate of EGF and horseradish peroxidase (EGF-HRP), a colloidal gold marker system using EGF-HRP as a primary antigen, and a covalent complex of EGF with rhodamine-labelled lactalbumin. All of the light and electron microscopic labels showed similar patterns of binding. EGF initially bound to diffusely distributed cell surface receptors at 4 degrees C. The EGF-receptor complexes clustered into clathrin-coated pits on the cell surface only when the temperature was raised to 37 degrees C. In KB and Swiss 3T3 cells, this was followed by rapid internationalization into receptosomes, compartmentalization into the Golgi system, clustering in the clathrin-coated regions of the Golgi, and finally delivery into lysosomes from the Golgi. This general pathway was seen in Swiss 3T3 cells which have a low number of EGF receptors, KB cells which have a moderate number of receptors and A431 cells that have a high number of receptors. However, the ruffling activity induced in A431 cells by EGF produced some internalization through macropinosomes, making the pathway of entry more difficult to evaluate. Double label experiments showed that EGF is internalized together with alpha 2-macroglobulin and adenovirus particles. These data clarify the route of entry of EGF in different cell types using multiple labels, and shows that it enters cells through the same coated pit entry pathway as most other ligands previously examined.  相似文献   

13.
The rotational diffusion of epidermal growth factor (EGF) bound to its specific receptor on the surface of human carcinoma A431 cells was studied by means of time-resolved phosphorescence anisotropy measurements. The rotational mobility was measured on the total population of EGF receptors by using a saturating concentration of EGF conjugated with a phosphorescent label, erythrosin, or on the subpopulation of high-affinity EGF receptors by using a low concentration of labeled EGF. At 4 degrees C, the rotational correlation times for both the high-affinity and total (mostly low affinity) receptor populations were in the range of 60-100 microns. Elevation of the temperature to 37 degrees C resulted in a lengthening of the rotational correlation time of the total receptor population to 200-300 microns, confirming a previous study of receptor microaggregation. The high-affinity EGF receptors were completely immobilized at 37 degrees C (rotational correlation time greater than 500 microns). The data are consistent with a model involving association of the cytoskeleton with the high-affinity receptors at 37 degrees C, but not at 4 degrees C.  相似文献   

14.
《The Journal of cell biology》1987,105(6):2751-2762
Epidermal growth factor (EGF) rapidly stimulates receptor autophosphorylation in A-431 cells. After 1 min the phosphorylated receptor can be identified at the plasma membrane using an anti- phosphotyrosine antibody. With further incubation at 37 degrees C, approximately 50% of the phosphorylated EGF receptor was internalized (t1/2 = 5 min) and associated with the tubulovesicular system and later with multivesicular bodies, but not the nucleus. During this period, there was no change in the extent or sites of phosphorylation. At all times the phosphotyrosine remained on the cytoplasmic side of the membrane, opposite to the EGF ligand identified by anti-EGF antibody. These data indicate that (a) the tyrosine-phosphorylated EGF receptor is internalized in its activated form providing a mechanism for translocation of the receptor kinase to substrates in the cell interior; (b) the internalized receptor remains intact for at least 60 min, does not associate with the nucleus, and does not generate any tyrosine-phosphorylated fragments; and (c) tyrosine phosphorylation alone is not the signal for receptor internalization.  相似文献   

15.
Endocytosis and intracellular processing of transferrin (Tf) and Tf receptors were examined in rat reticulocytes. Subcellular fractionation revealed that Tf enters a non-lysosomal endocytic compartment with a density between those of plasma membrane and lysosomes. After 20 min of uptake at (37 degrees C) 35 to 40% of cell-associated Tf was contained in this intermediate-density compartment. To test the fidelity of colloidal gold-Tf (AuTf) as a probe for Tf processing, reticulocytes were fractionated after uptake of 131I-Tf and 125I-AuTf. The subcellular distributions of the two ligands were indistinguishable by this method, a result suggesting that AuTf is processed similarly to Tf. Electron microscopy revealed that AuTf entered multivesicular endosomes (MVEs) as well as various small vesicles and tubular structures. In addition MVE exocytosis was observed with discharge of inclusion vesicles and associated AuTf. AuTf was bound to the outside of these vesicles both before and after exocytosis. These data suggest that Tf receptors are shed from developing reticulocytes by incorporation into the limiting membrane of inclusion vesicles, followed by discharge of these vesicles by MVE exocytosis. As further evidence of this process, we isolated inclusion vesicles after their discharge and found them to contain Tf receptors. Moreover, the rate of Tf receptor shedding by inclusion vesicle discharge matches Tf receptor loss rates closely enough to suggest that this is the primary path of receptor loss during reticulocyte development.  相似文献   

16.
Substantial amounts of epidermal growth factor (EGF) are cleared from the circulation by hepatocytes via receptor-mediated endocytosis and subsequently degraded within lysosomes. We have used a combined biochemical and morphological approach to examine the fate of the receptor after exposure to EGF. Polyclonal antibodies were prepared against the purified receptor and their specificity established by immunoprecipitation and immunoblotting techniques. The EGF receptor was then localized by immunofluorescence and immunoperoxidase techniques and quantified on immunoblots. In untreated livers, EGF receptor was restricted to the sinusoidal and lateral surfaces of hepatocytes. 2-4 min after exposure of cells to EGF, the receptor was found in small vesicles (i.e., coated vesicles) as well as larger vesicles and tubules at the cell periphery. By 15 min the receptor was found in multivesicular endosomes located near bile canaliculi. Exposure of hepatocytes to EGF also resulted in a rapid loss of receptor protein from total liver homogenates and a decrease in its half-life from 8.7 h in control livers to 2.5 h. This EGF-induced loss of receptors was not observed when lysosomal proteinases were inhibited by leupeptin or when endosome/lysosome fusion was prevented by low temperature (16 degrees C). In the presence of leupeptin, receptor could be detected in structures identified as lysosomes using acid-phosphatase cytochemistry. All these results suggested rapid internalization of EGF receptors in response to ligand and degradation within lysosomes. However, four times more ligand was degraded at 8 h than the number of high-affinity (Kd of 8-15 nM) EGF-binding sites lost, suggesting either (a) high-affinity receptors were recycled, and/or (b) more than 300,000 receptors were available for EGF uptake. We identified and characterized a latent pool of approximately 300,000 low-affinity receptors (Kd approximately 200 nM) that could be separated on sucrose gradients from the plasma membrane pool of approximately 300,000 high-affinity receptors (Kd of 8-15 nM). Despite the differences in their binding affinities, the high- and low-affinity receptors appeared to be structurally identical and were both EGF-dependent protein kinases. In addition, the dynamics of the low-affinity receptors were consistent with a functional role in EGF uptake and delivery to lysosomes.  相似文献   

17.
Receptor-mediated hepatic uptake of low density lipoproteins (LDL) conjugated to colloidal gold was studied by perfusion of livers from rats treated for 5 d with 17 alpha-ethinylestradiol. Estrogen treatment resulted in a marked decrease in serum lipid and lipoprotein concentrations. After 15 min of perfusion the conjugate was bound to the hepatic microvilli of both control and estrogen-treated rats; the estrogen-treated rats showed an 8- to 11-fold greater number of membrane-bound conjugates. The conjugates were bound to the membrane receptor by the LDL particle because the gold granules were regularly displaced from the membrane by 20 +/- 3.2 nm, the diameter of LDL. Internalization of the conjugate, evident by gold particles in multivesicular bodies, occurred at coated pits at the base of the microvillus where coated vesicles containing a single gold-LDL conjugate were released. After 1 h of perfusion, the livers from the estrogen-treated rats showed all phases of endocytosis and incorporation into multivesicular bodies of the conjugate. After 2 h of perfusion, there was congregation of gold-labeled lysosomes near the bile canaliculi. Gold-LDL conjugates were also observed to bind and be internalized by Kupffer cells and sinusoidal endothelium. These findings indicate that estrogen treatment induces hepatic receptors for LDL. The catabolic pathway of binding and endocytosis of the conjugate is similar to that seen in fibroblasts, although slower. Because gold-LDL conjugates were also present in the Kupffer and endothelial cells, the uptake of LDL by the liver involves the participation of more than a single cell type.  相似文献   

18.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.  相似文献   

19.
《The Journal of cell biology》1995,129(6):1543-1558
The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of the tyrosine kinase domains.  相似文献   

20.
We have used combinations of subcellular fractionation, specific cytochemical tracers, and quantitative immunoadsorption to determine when, where, and in which intracellular structure internalized asialoglycoproteins (ASGPs) are segregated from their receptor. All membrane vesicles containing the receptor (R+ vesicles) were quantitatively immunoadsorbed from crude microsomes with Staphylococcus aureus cells and affinity-purified anti-ASGP receptor. Using this assay, we varied the time and temperature of exposure of perfused livers to 125I-asialoorosomucoid (125I-ASOR) and followed the movement of ligand from R+ to R- vesicles. After 2.5 min at 37 degrees C, 98% of the internalized ligand could be immunoadsorbed and thus was in R+ vesicles. Over the next 12 min of continuous 37 degrees C perfusion with 125I-ASOR, an increasing fraction of the ligand was not immunoadsorbed and therefore was present in R- vesicles. A maximum of 30% of the ligand could be found in R- vesicles (14-44 min). When livers were maintained at 16 degrees C, ligand was internalized but remained in R+ vesicles. Furthermore, ligand accumulating in R- vesicles at 37 degrees C remained there when livers were cooled to 16 degrees C. R- endosomes could be separated from R+ endosomes by flotation on sucrose density gradients and visualized by the presence of sequestered ASOR-horseradish peroxidase (ASOR-HRP). These structures resembled those labeled by ASOR-HRP in situ: R+ vesicles were relatively dense (1.12 g/cc), frequently tubular or spherical and small (100-nm diam), corresponding to the peripheral and internal tubular endosomes; R- structures were of lower density (1.09 g/cc), large (400-nm diam), and resembled internal multivesicular endosomes (MVEs). Endocytosed ASOR-HRP was found in both the peripheral and internal tubular endosomes in situ under conditions where 95% of the ligand was present in R+ vesicles by immunoadsorption, whereas MVEs containing ASOR-HRP were predominant in situ when ligand was found in R- vesicles and were often in continuity with the tubular internal endosomes. All of these results suggest that complete segregation of ligand and receptor occurs after arrival in the Golgi-lysosome region of the hepatocyte and that MVEs are R- and represent the final prelysosomal compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号