首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ju Y  Wang T  Li Y  Xin W  Wang S  Li J 《Cell biology international》2007,31(10):1207-1213
Tight junction (TJ) plays a pivotal role in preventing the invasion of pathogens from the blood to extracellular environment. However, the mechanisms by which Group B coxsackievirus 3 (CVB(3)) can get through TJ from the apical surface still remain obscure. In the present study, the human umbilical vein endothelial cell (HUVEC) was utilized to investigate the alterations in F-actin and ZO-1 status, permeability as well as p38 mitogen-activated protein kinase (MAPK) activity in response to CVB(3) by means of fluorescence labeling, flow cytometry, and macromolecule permeability assay. We found that CVB(3) was able to induce reorganization of F-actin and redistribution of ZO-1, increase the level of F-actin, and elevate the permeability of FITC-albumin. Moreover, CVB(3)-mediated the above effects involve in P38 MAPK activation. Our preliminary study indicates that CVB(3)-induced alteration in permeability may be attributed to disruption of F-actin and ZO-1 organizations and that SB203580, a specific P38 MAPK inhibitor, can reverse these effects. The precise mechanisms underlying the CVB(3)-mediated effects on HUVECs need to be studied further.  相似文献   

2.
Extravasation of peripheral blood monocytes through vascular basement membranes requires degradation of extracellular matrix components including heparan sulfate proteoglycans (HSPGs). Heparanase, the heparan sulfate-specific endo-beta-glucuronidase, has previously been shown to be a key enzyme in melanoma invasion, yet its involvement in monocyte extravasation has not been elucidated. We examined a potential regulatory mechanism of heparanase in HSPG degradation and transmigration through basement membranes in leukocyte trafficking using human promonocytic leukemia U937 and THP-1 cells. PMA-treated cells were shown to degrade 35S-sulfated HSPG in endothelial extracellular matrix into fragments of an approximate molecular mass of 5 kDa. This was not found with untreated cells. The gene expression levels of heparanase or the enzyme activity of the amount of cell lysates were no different between untreated and treated cells. Immunocytochemical staining with anti-heparanase mAb revealed pericellular distribution of heparanase in PMA-treated cells but not in untreated cells. Cell surface heparanase capped into a restricted area on PMA-treated cells when they were allowed to adhere. Addition of a chemoattractant fMLP induced polarization of the PMA-treated cells and heparanase redistribution at the leading edge of migration. Therefore a major regulatory process of heparanase activity in the cells seems to be surface expression and capping of the enzyme. Addition of the anti-heparanase Ab significantly inhibited enzymatic activity and transmigration of the PMA-treated cells, suggesting that the cell surface redistribution of heparanase is involved in monocyte extravasation through basement membranes.  相似文献   

3.
C6 glial tumor cells exposed to phorbol myristate acetate (PMA) possessed lowered cAMP content, reduced ability to accumulate cAMP in response to norepinephrine or cholera toxin, and a 3-fold increase in the concentration of norepinephrine producing 50% of the maximal rate of cAMP accumulation. Detectable effects on cAMP accumulation occurred within 10 min of exposure to PMA, and prominent effects by 2 h. PMA similarly affected cells pretreated with cycloheximide. In contrast, Ca2+-depleted preparations of control and PMA-treated cells accumulated cAMP identically in response to norepinephrine or cholera toxin. Ca2+ restoration, which increased the rate of cAMP accumulation in control cells severalfold, did not enhance cAMP accumulation in PMA-treated cells. Neither high catecholamine nor high extracellular Ca2+ concentrations reversed the suppression of cAMP accumulation by PMA. Trifluoperazine, which inhibited the Ca2+-dependent component of norepinephrine-stimulated cAMP accumulation in control cells, did not significantly reduce norepinephrine-stimulated cAMP accumulation in PMA-treated cells. Cell free preparations of control and PMA-treated cultures did not differ significantly in calmodulin content or in Ca2+-stimulated adenylate cyclase, Ca2+-dependent cAMP phosphodiesterase, and (Ca2+-Mg2+)-ATPase activities. The Ca2+ content, however, of intact cells decreased with time of PMA treatment. Within minutes after exposure to PMA, the ability of Ca2+-depleted cells to take up 45Ca was significantly reduced. Both 45Ca uptake and Ca2+-dependent cAMP accumulation were reduced over the same PMA concentration range.  相似文献   

4.
Pulmonary edema and immunosuppression of the lung are primary causes of debilitation and death from phosgene gas exposure. The pathophysiology that gives rise to these conditions shares a common clinical pathway. However, the target cells and lesions that disrupt normal barrier function and immune response of the lung are complex and poorly understood. Using confocal laser microscopy and FITC-conjugated phalloidin, we have studied the effects of phosgene of F-actin in endothelial cells from sheep pulmonary arteries and epithelial cells from rat tracheal explants. Image analyses from attached culture systems indicate that F-actin was a sensitive target molecule in both species. Exposures ranging from 0.15 to 1.0×LCt50 for sheepin vivo (3300 ppm.min) produced immediate, dose-dependent decreases in average F-actin content of cultured endothelial cells. Dense peripheral bands and stress fibers were diminished and partially disrupted but were not destroyed by these doses. Changes in ultrastructure and the permeability barrier of endothelial tissues included separation of basal lamina and development of paracellular leakage paths. Phosgene also decreased the F-actin in airway epithelial cells and potentiated phenotypic transformations that gave rise to progeny with dendritic processes. Differences in endothelial and airway epithelial response indicate that the cytoskeletal effects of phosgene were cell-type specific. Disruption of basal lamina, depletion of F-actin, and development of endothelial leakage paths may contribute to decreased barrier function and increased permeability of vascular tissues. Phosgene-induced transformations that involved F-actin reorganization and appearance of dendritic cells among airway apithelia may affect other functions of the lung.Abbreviations DPB dense peripheral band - LCt50 lethal dose (gas concentration x time [duration] of exposure) for sheep - PAEC pulmonary artery endothelial cell - PLP paracellular leakage path  相似文献   

5.
To understand the role of microtubules and microfilaments in regulating endothelial monolayer integrity and repair, and since microtubules and microfilaments show some co-alignment in endothelial cells, we tested the hypothesis that microtubules organize microfilament distribution. Disruption of microtubules with colchicine in resting confluent aortic endothelial monolayers resulted in disruption of microfilament distribution with a loss of dense peripheral bands, an increase in actin microfilament bundles, and an associated increase of focal adhesion proteins at the periphery of the cells. However, when microfilaments were disrupted with cytochalasin B, microtubule distribution did not change. During the early stages of wound repair of aortic endothelial monolayers, microtubules and microfilaments undergo a sequential series of changes in distribution prior to cell migration. They are initially distributed randomly relative to the wound edge, then align parallel to the wound edge and then elongate perpendicular to the wound edge. When microtubules in wounded cultures were disrupted, dense peripheral bands and lamellipodia formation were lost with increases in central stress fibers. However, following microfilament disruption, microtubule redistribution was not disrupted and the microtubules elongated perpendicular to the wound edge similar to non-treated cultures. Microtubules may organize independently of microfilaments while microfilaments require microtubules to maintain normal organization in confluent and repairing aortic endothelial monolayers.  相似文献   

6.
Confluent cultures of aortic endothelial cells contain two different cell-cell adhesion mechanisms distinguished by their requirement for calcium during trypsinization and adhesion. A hybridoma clone was isolated producing a monoclonal antibody Ec6C10, which inhibits Ca2(+)-dependent adhesion of endothelial cells. There was no inhibition of Ca2(+)-independent adhesion of endothelial cells and only a minor effect on Ca2(+)-dependent adhesion of smooth muscle cells. Immunoblotting analysis shows that the antibody Ec6C10 recognizes a protein in endothelial but not epithelial cells with an apparent molecular weight of 135,000 in reducing conditions and 130,000 in non-reducing conditions. Monoclonal antibody Ec6C10 reacts with an antigen at the cell surface as shown by indirect immunofluorescence of confluent endothelial cells in a junctional pattern outlining the cobblestone morphology of the monolayer. Removal of extracellular calcium increased the susceptibility of the antigen recognized by antibody Ec6C10 to proteolysis by trypsin. The role of the Ca2(+)-dependent cell adhesion molecule in organization of the dense peripheral microfilament band in confluent endothelial cells was examined by adjusting the level of extracellular calcium to modulate cell-cell contact. Addition of the monoclonal antibody Ec6C10 at the time of the calcium switch inhibited the extent of formation of the peripheral F-actin band. These results suggest an association between cell-cell contact and the peripheral F-actin band potentially through the Ca2(+)-dependent CAM.  相似文献   

7.
Changes in the level of calcium-activated neutral proteases (calpains) in K562 cells induced to differentiate by phorbol 12-myristate 13-acetate (PMA) were examined by an immunohistochemical technique and Western blot analysis. A remarkable increase in m-calpain (high-Ca(2+)-requiring form) level was detected after PMA-treatment, while there was no significant difference in mu-calpain (low-Ca(2+)-requiring form) level between PMA-treated and untreated K562 cells. To confirm whether the increase in m-calpain is specific to PMA-induced differentiation, we examined changes in calpain in K562 cells cultured in serum-free medium and in synchronized cells. The results indicate that the increase has no relation to growth arrest or to cell cycle. PMA-treated cells exhibited increased nonspecific esterase activity, suggesting monocytic differentiation. Immunoelectron microscopic study showed the reactions of dense deposits with monoclonal anti-m-calpain antibody on cell membranes, on membranes of coated vesicles, and on rough endoplasmic reticulum of K562 cells after 26 h of PMA treatment.  相似文献   

8.
We examined the effect of tumor necrosis factor alpha (TNF alpha) on the increase in pulmonary microvascular endothelial monolayer permeability induced by activated neutrophils (PMN). Layering of PMN onto endothelial monolayers followed by activation of PMN with phorbol 12-myristate 13-acetate (PMA) increased 125I-albumin clearance rate across the monolayers. Pretreatment of endothelial monolayers for 6 hr with TNF alpha (200 U/ml) potentiated the PMN-dependent increase in endothelial permeability, whereas 1 hr or 6 hr pretreatment of endothelial monolayers with 200 U/ml and 100 U/ml, respectively, TNF alpha did not enhance the response. Adherence of PMN to the endothelial cells was increased at 1 and 6 hr after TNF alpha (200 U/ml) treatment, but the adherence response was markedly greater following 6 hr of TNF alpha. The TNF alpha treatment of endothelial cells did not enhance neutrophil activation responses to PMA. Pretreatment of PMN with IB4, a MAb to the CD18 integrin, the common beta subunit of the adhesion proteins LFA-1, Mac-1, and p150,95 of PMN, reduced the increases in PMN adherence and the endothelial monolayer permeability induced by the 6 hr TNF alpha treatment. In contrast, pretreatment of PMN with OKM-1, a MAb to the CD11b epitope (alpha-subunit), had no effect on the adherence and the potentiation of the increase in permeability. The potentiation of the PMN-dependent permeability increase and enhanced endothelial adhesivity at 6 hr after TNF alpha priming of endothelial cells was dependent on protein synthesis. The results indicate that protein synthesis-dependent expression of an endothelial ligand for CD18 and resultant endothelial hyperadhesiveness potentiates the PMN-mediated increase in endothelial permeability after TNF alpha activation of endothelial cells. The priming of endothelial cells by TNF alpha may be a critical step in the mediation of endothelial injury.  相似文献   

9.
Tumor necrosis factor-alpha (TNF-alpha) is known to induce changes in endothelial cell morphology and permeability, but the mechanisms have not been extensively characterized. TNF-alpha rapidly induced RhoA activation and myosin light chain phosphorylation, but caused only small changes to cortical F-actin, without significantly increasing paracellular permeability up to 30 min after stimulation. TNF-alpha subsequently caused a progressive increase in permeability and in stress fiber reorganization, cell elongation, and intercellular gap formation over 8-24 h. Consistent with the increased permeability, Occludin and JAM-A were removed from tight junctions and ZO-1 was partially redistributed. Rho/ROCK but not MLCK inhibition prevented the long-term TNF-alpha-induced changes in F-actin and cell morphology, but ROCK inhibition did not affect permeability. These results suggest that the gradual increase in permeability induced by TNF-alpha does not reflect contractile mechanisms mediated by Rho, ROCK, and MLCK, but involves long-term reorganization of tight junction proteins.  相似文献   

10.
In the presence of porcine aortic endothelial cytosol, soluble guanylyl cyclase purified from bovine lung was activated by L-arginine up to 2.5-fold, with an EC50 of about 6 microM. This activation was dependent on NADPH and Ca2+. The EC50 for Ca2+ was about 60 nM. No effect of L-arginine on guanylyl cyclase was observed when the cytosolic proteins were heat-denaturated. The effect of L-arginine was inhibited by NG-monomethyl-L-arginine and hemoglobin. These results indicate that endothelial cells contain a cytosolic enzyme which is directly or indirectly regulated by Ca2+ and converts L-arginine into a compound which in stimulating soluble guanylyl cyclase behaves similar to endothelium-derived relaxing factor.  相似文献   

11.
Injection of phorbol 12-myristate 13-acetate (PMA) into polymorphonuclear leukocyte (PMN)-depleted, PMN cytoplast-repleted New Zealand White rabbits caused the development of acute lung injury in vivo. PMN cytoplasts are nucleus- and granule-free vesicles of cytoplasm capable of releasing toxic O2 radicals but incapable of releasing granule enzymes. PMN cytoplasts when activated by PMA reduced 66 +/- 12.7 nmol of cytochrome c compared with 2.6 +/- 0.7 nmol in their resting state and did not release a significant quantity of granule enzymes (P greater than 0.05). Injection of PMA into New Zealand White rabbits caused a significant decrease (P less than 0.05) in the number of circulating cytoplasts. Increases in lung weight-to-body weight ratios in PMA-treated rabbits (9.8 +/- 0.5 X 10(-3] compared with saline-treated rabbits (5.3 +/- 0.2 X 10(-3] were also noted. Levels of angiotensin-converting enzyme in lung lavage as well as the change in alveolar-arterial O2 ratio correlated with the numbers of cytoplasts in lung lavage (P = 0.001, r = 0.84 and P = 0.0166, r = 0.73, respectively). Albumin in lung lavage increased to 1,700 +/- 186 mg/ml in PMA-treated rabbits from 60 +/- 30 mg/ml in saline-treated rabbits. These changes were attenuated by pretreatment of rabbits with dimethylthiourea (DMTU). In vitro, cytoplasts were able to mediate increases in endothelial monolayer permeability. This was evidenced by increases in fractional transit of albumin across endothelial monolayers when treated with PMA-activated cytoplasts (0.08 +/- 0.01 to 0.28 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Time course changes in the cell shape and in the patterns of microfilament distribution were analyzed quantitatively using cultured porcine aortic endothelial cell monolayers before and after a shear flow exposure. Geometrical parameters of the cell and of the microfilament were measured on fluorescent photomicrographs of the cells stained with rhodamine-phalloidin. After the shear flow exposure (20 dyn cm-2, 0-24 h), the endothelial cells on glass were elongated and oriented to the direction of the flow. Under the no-flow condition, F-actin filaments were mainly localized at the periphery of the cell, although some filaments were seen in the more central portion. The angles of the filaments were randomly distributed. After 3 h, the stress fiber-like structure of an F-actin bundle was formed in the central part of the cells, and these filaments were oriented to the direction of the flow. The degree of orientation increased as the time of exposure to shear stress became longer. This change in F-actin preceded cell elongation and orientation; these changes were statistically significant only after 6 h. After 24 h, peripheral filaments were again observed, and the fluorescence intensity of rhodamine-phalloidin-stained cells was enhanced. These findings suggest that the redistribution of F-actin filaments is one of the early cellular responses to the onset of shear stress and that it is one of the most important factors controlling cell elongation and orientation to the direction of the flow.  相似文献   

13.
The acute and the long-term (24 h) effects of protein kinase C activators, phorbol 12 myristate 13-acetate (PMA) and 1-oleoyl-2-acetyl-sn-glycerol, and the calcium ionophore A23187 on cultured pig Leydig cell functions were investigated. None of these drugs modified basal cAMP production, but they induced a small (3-4-fold) increase in testosterone secretion. The stimulatory effects of human choriogonadotropin (hCG; 1 nM) on both cAMP and testosterone productions were inhibited by short-term incubation with these drugs. In addition, they suppressed the stimulation of testosterone output by forskolin and 8-bromo-adenosine 3',5'-monophosphate, whereas the forskolin-dependent cAMP production was unaffected. The inhibitory effects of PMA on hCG stimulation of both cAMP and testosterone were due mainly to a decrease of the Vmax without modification of the ED50. Moreover, PMA did not modify the binding of 125I-hCG. Pretreatment of Leydig cells with the three drugs for 24 h induced more pronounced modifications, such as a reduction in the number of hCG binding sites and a decreased responsiveness to hCG and forskolin, the testosterone production being drastically reduced. The effects of PMA were dose- and time-dependent; however, the concentration of PMA required to induce half-maximal effects on hCG receptors (10 nM) was about one order of magnitude higher than those required to reduce cAMP and testosterone productions. Further, the inhibitory effects on cAMP and testosterone secretions appeared within the first 3 h, whereas the hCG receptor number remained constant for at least 8 h. It appears therefore, that the main alteration responsible for the steroidogenic refractoriness of PMA-treated Leydig cells is located beyond cAMP formation. Moreover, since conversion of exogenous pregnenolone to testosterone by control and PMA-treated cells was similar, the alteration was probably located before pregnenolone formation. Kinetic studies with 125I-hCG showed that the rate of internalization of the hormone-receptor complexes was similar in control cells and in PMA-treated cells, suggesting that the decline in receptor number observed in the latter group after an 8-h delay is not due to an increased rate of internalization nor to sequestration of the internalized receptors inside the cells. Since cycloheximide blocked the effects of PMA on hCG down-regulation, it is likely that the phorbol esters and 1-oleoyl-2-acetyl-sn-glycerol induce the synthesis of some proteins which blocked the recycling of internalized receptors. A similar hypothesis has been put forward recently to explain the hCG-induced down regulation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Chen C  Ba X  Xu T  Cui L  Hao S  Zeng X 《Journal of biochemistry》2006,140(2):229-235
L-selectin is a cell adhesion molecule mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells expressing L-selectin ligands. In addition to its action in adhesion, an intracellular signaling role for L-selectin has been recognized. Its cytoplasmic domain is involved in signal transduction following antibody crosslinking and in the regulation of receptor binding activity in response to intracellular signals. In this work, we demonstrated that L-selectin crosslinking led to F-actin polymerization and redistribution in human neutrophils. Using immuno-fluorescence microscopy, we observed that F-actin redistribution spatiotemporally related to the polarization of L-selectin. STI571, a specific inhibitor for cytoplasmic tyrosine kinase c-Abl, can inhibit F-actin polymerization and c-Abl redistribution in the activated neutrophils. Furthermore, we determined that c-Abl redistributed to the region where L-selectin polarized and associated with L-selectin in the activated neutrophils. The association between L-selectin and c-Abl was reduced by cytochalasin B. These results suggested that c-Abl was involved in the F-actin alteration triggered by L-selectin crosslinking in human neutrophils.  相似文献   

15.
2-cell mouse embryos were treated in vitro with a 2 h pulse of phorbol myristate acetate (PMA) at 32nd, 38th and 50th h after hCG, then chased in culture for up to 46 h. Embryos were fixed at various time intervals of chasing, then stained and inspected. Some embryos were carefully inspected with a video recording system, every 1.44s and the cell divisions (cytokinesis) as well as formation of large, single blastomeres, each from two smaller ones, were recorded. PMA pulse let to the suppression of cell divisions. The rate of the suppression was time dependent: with a delay of 0-1, 12 and 18 h between the PMA pulse and time of scheduled cell division about 99, 87 and 44% of 2-cell embryos remained at this stage of development, for at least 10 h, respectively, and 90, 58 and 12% of their blastomeres revealed binuclearity. Since we found that PMA-mediated formation of binuclearity was not the effect of cell fusions, it was assumed that the inhibition of cytokinesis preceded by karyokinesis was responsible for binuclearity. PMA effect on cell divisions was reversible. PMA-treated embryos revealed formation of large, single blastomeres, each from two smaller ones. If cell division appeared after PMA pulse, in about 52% of 3- to 6-cell embryos, the large blastomere formation was recorded in the course of the subsequent 38 h. Large blastomere formation was concluded to be the result of either cell fusion or reversion of incompleted cytokinesis brought about by PMA.  相似文献   

16.
Li HB  Ge YK  Zhang L  Zheng XX 《Life sciences》2006,79(12):1186-1193
The purpose of the present study was to examine the effects of astragaloside IV, a saponin isolated from Astragalus membranaceus (Fisch) Bge, on the impairment of barrier function induced by acute high glucose in cultured human vein endothelial cells. High glucose (27.8 mM) induced a decrease in transendothelial electrical impedance and an increase in cell monolayer permeability in human umbilical vein endothelial cells. Endothelial barrier dysfunction stimulated by high glucose was accompanied by translocation and activation of protein kinase C (PKC), the redistribution of F-actin and formation of intercellular gaps, suggesting that increases in PKC activity and rearrangement of F-actin could be associated with endothelial barrier dysfunction induced by acute high glucose. Application of astragaloside IV inhibited high glucose-induced endothelial barrier dysfunction in a dose-dependent manner, which is compatible with inhibition of PKC translocation and improvement of F-actin rearrangements. Western blot analysis revealed that high glucose-induced PKC alpha and beta2 overexpression in the membrane fraction were significantly reduced by astragaloside IV. These findings indicate that astragaloside IV protected endothelial cells from high glucose-induced barrier impairment by inhibiting PKC activation, as well as improving cytoskeleton remodeling.  相似文献   

17.
Tumor-promoting phorbol esters induce angiogenesis in vitro   总被引:48,自引:0,他引:48  
R Montesano  L Orci 《Cell》1985,42(2):469-477
A crucial event during angiogenesis is the invasion of the perivascular extracellular matrix by sprouting endothelial cells. To investigate the possible role of proteases in endothelial cell invasiveness in vitro, bovine microvascular endothelial cells (BMEC) grown on collagen gels were treated with phorbol myristate acetate (PMA), a tumor promoter that markedly increases their production of collagenase and plasminogen activator. Whereas control BMEC were confined to the surface of the gels, PMA-treated BMEC invaded the underlying collagen matrix, where they formed an extensive network of capillary-like tubular structures. This phenomenon, which mimics some of the events occurring during angiogenesis in vivo, required protein synthesis and intercellular contact, was accompanied by collagen degradation, and was prevented by the metalloprotease inhibitor 1,10-phenanthroline.  相似文献   

18.
When human erythroleukemia cells (K562) were exposed to phorbol-12-myristate 13-acetate (PMA), phosphorylation of transferrin receptors was enhanced 5-fold with 10(-7) M PMA and 7-fold with 10(-6) M PMA, but not with 4 alpha-phorbol (5 X 10(-7) M). Stimulation took place in serine residues in the cytoplasmic domain of the receptor. Although phosphorylation in the control cells took place in both cell-surface and intracellular receptors, phosphorylation in PMA-treated cells increased only in the cell-surface receptors, not in the intracellular receptors. The number of receptors on the cell surface increased slightly with the increase in phosphorylation at the cell surface, in the PMA-treated cells. No difference in transferrin binding was found for the control and PMA-treated cells. These results indicate that enhanced phosphorylation of the transferrin receptor takes place on the cell surface only and that it presumably is mediated by protein kinase C.  相似文献   

19.
Oxygen free radicals are implicated in the pathophysiology of ischemia-reperfusion (I/R) injury in skeletal muscle. Nitric oxide (NO) and prostaglandin E2 (PGE2) are important regulators of the microcirculation in skeletal muscle. The effects of L-arginine, substrate for NO, and N(G)-nitro L-arginine methyl ester (L-NAME) on PGE2 synthesis, lipid peroxidation and reduced glutathione (GSH) levels was investigated in the rat gastrocnemius muscle after 3 h of reperfusion following 2 h of ischemia. Lipid peroxidation and GSH levels showed a non-significant changes in the I/R groups compared to the control group. According to these results, it can be assumed that skeletal muscle can resist 2 h of ischemia followed by 3 h of reperfusion-induced oxidative stress. PGE2-like activity in the gastrocnemius muscle increased in the L-NAME treated and I/R groups. L-arginine administration reversed the increase in PGE2-like activity of reperfused skeletal muscle. These findings support the conclusion that endothelium-derived PGE2 synthesis increases during reperfusion and suggest that PGE2 may have a protective role in the maintenance of endothelial function.  相似文献   

20.
To investigate whether impaired endothelial function was related to alteration of nitric oxide (NO) formation during endotoxic shock, we studied the effects of supplementation of L-arginine (L-Arg), D-arginine (D-Arg), and N(G)-nitro-L-arginine methyl ester (L-NAME), on endothelial function and structure in a rabbit model. Endotoxic shock was induced by a single lipopolysaccharide bolus (0.5 mg/kg i.v., Escherichia coli endotoxin). Coagulation factors and expression of monocyte tissue factor were determined by functional assays. Endothelium-dependent vascular relaxation was assessed by in vitro vascular reactivity. Immunohistochemical staining (CD31) was performed to assess damaged endothelial cell surface of the abdominal aorta. These parameters were studied 5 days after the onset of endotoxic shock and were compared under three conditions: in absence of treatment, with L-Arg or D-Arg supplementation, or with L-NAME. Both L-Arg and D-Arg significantly improved endothelium-dependent relaxation and endothelial morphological injury. L-NAME did not alter endothelial histological injury induced by lipopolysaccharide. These data indicate that arginine supplementation nonspecifically prevents endothelial dysfunction and histological injury in rabbit endotoxic shock. Moreover, L-Arg has no effect on coagulation activation and expression of monocyte tissue factor induced by endotoxic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号