首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Early porcine embryos at the four- to eight-cell stage can be infected with either the virulent (NADL-8) or avirulent KBSH strain of porcine parvovirus (PPV) by microinjection or by incubation of embryos with virus. Treatment of embryos by microinjection of virus or incubation in media with virus did not significantly inhibit in vitro development of the embryos when compared with untreated controls. RNA-DNA hybridization was used to identify the presence of virus associated with embryos. It was found that PPV-DNA was present in viable embryos after microinjection of embryos with KBSH and NADL-8 strains of PPV and after incubation of embryos with KBSH strain. The data indicated the presence of replicative virus associated with viable porcine embryos.  相似文献   

2.
3.
Sera from porcine parvovirus (PPV)-infected swine fetuses immunoprecipitated and 84- to 86-kilodalton polypeptide in addition to the A and B virion structural proteins. This polypeptide, designated NS-1, was present in PPV-infected cell lysates but not in purified virions. Partial proteolysis mapping revealed that NS-1 was not related to the A and B viral structural proteins. All three proteins in infected cells were phosphorylated at serine residues, and NS-1 also contained phosphothreonine. From pulse-labeling experiments with either 32Pi or [35S]methionine, NS-1 was found to first appear 5 to 7 h postinfection, whereas the viral structural polypeptides were first synthesized 9 to 11 h postinfection. Pulse-chase experiments revealed that NS-1 initially appeared as an 84-kilodalton protein and was subsequently structurally modified to forms of slower electrophoretic mobilities. The time of appearance of NS-1 after virus infection coincided with the initiation of viral DNA synthesis, suggesting that this polypeptide (and the modified forms thereof) may be involved in PPV replication.  相似文献   

4.
5.
Factors controlling porcine parvovirus (PPV) replication efficiency are poorly characterized. Two prototype strains of PPV, NADL-2 and Kresse, differ greatly in pathogenic capacity both in vivo and in vitro, yet their genomic sequence is nearly identical (13 single-nucleotide substitutions and a 127-nucleotide noncoding repeated sequence). We have created a series of chimeras of these strains to identify the genetic elements involved in replication efficiency in the host porcine cell line. While the capsid proteins ultimately determine viral replication fitness, interaction between the NS1 protein and the VP gene occurs and involves interaction with the noncoding repeated sequence.  相似文献   

6.
Structural and nonstructural proteins of a rabbit parvovirus   总被引:6,自引:6,他引:0  
The structural and nonstructural polypeptides of a rabbit parvovirus (RPV) (F-7-9 strain) were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The virion contained three polypeptide components, A (molecular weight, 96,000), B (85,000), and C (75,000). A part of the polypeptide C was cleaved into the smaller-molecular-weight polypeptide C' by proteolysis during purification steps. The major polypeptide C together with C' constituted about 87% of the total viral proteins, and the minor polypeptides, A and B, constituted 4 and 9%, respectively. The structural polypeptides of empty particles were similar in size and composition to those of the virion, but the content of the C' polypeptide was very low. When rabbit kidney cell cultures were infected with RPV, the C polypeptide was detected as early as 15 h postinfection, whereas A and B were first demonstrated at 18 h. The C' polypeptide was not detected for 44 h. In addition to the three structural polypeptides, at least three nonstructural polypeptides, E, F, and G, were demonstrated in the RPV-infected cells. Polypeptide E (molecular weight, 49,000), detected mostly in cytoplasm, seemed to be a cellular protein. The F (25,000) and G (22,000) polypeptides seemed to be virus-coded proteins since they were precipitated with the anti-RPV rabbit immunoglobulin. According to partial proteolysis and peptide mapping, the F and G polypeptides shared the same peptide components.  相似文献   

7.
Reproductive failures are still common grounds for complaint by commercial swine producers. Porcine parvovirus (PPV) is associated with different clinical reproductive signs. The aim of the present study was to investigate PPV fetal infection at swine farms having ongoing reproductive performance problems. The presence of virus in fetal tissues was determined by nested-polymerase chain reaction assay directed to the conserved NS1 gene of PPV in aborted fetuses, mummies and stillborns. Fetuses show a high frequency of PPV infection (96.4%; n = 28). In 60.7% of the fetuses, PPV were detected in all tissue samples (lung, heart, thymus, kidney, and spleen). Viral infection differed among fetal tissues, with a higher frequency in the lung and heart (p < 0.05). Fetuses with up to 99 days of gestational age and from younger sows showed a higher frequency of PPV (p < 0.05). No significant difference in the presence of PPV was detected among the three clinical presentations. The results suggest that PPV remains an important pathogenic agent associated with porcine fetal death.  相似文献   

8.
DNA from one cell culture-adapted and two pathogenic strains of Aleutian disease of mink parvovirus (ADV) was molecularly cloned into the vectors pUC18 and pUC19. The DNA from the two pathogenic strains (ADV-Utah I and ADV-Pullman) was obtained from virus purified directly from the organs of infected mink, whereas the DNA from the nonpathogenic ADV-G was derived from cell culture material. The cloned segment from all three viruses represented a 3.55-kilobase-pair BamHI (15 map units) to HindIII (88 map units) fragment. Detailed physical mapping studies indicated that all three viruses shared 29 of 46 restriction endonuclease recognition sites but that 6 sites unique to the pathogenic strains and 5 sites unique to ADV-G were clustered in the portion of the genome expected to code for structural proteins. Clones from all three viruses directed the synthesis of two ADV-specific polypeptides with molecular weights of approximately 57 and 34 kilodaltons. Both species reacted with sera from infected mink as well as with a monoclonal antibody specific for ADV structural proteins. Because production of these ADV antigens was detected in both pUC18 and pUC19 and was not influenced by isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, their expression was not regulated by the lac promoter of the pUC vector, but presumably by promoterlike sequences found within the ADV DNA. The proteins specified by the clones of ADV-G were 2 to 3 kilodaltons smaller than those of the two pathogenic strains, although the DNA segments were identical in size. This difference in protein molecular weights may correlate with pathogenicity, because capsid proteins of pathogenic and nonpathogenic strains of ADV exhibit a similar difference.  相似文献   

9.
The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data.  相似文献   

10.
The structure of porcine parvovirus: comparison with related viruses   总被引:15,自引:0,他引:15  
The structure of baculovirus-expressed porcine parvovirus (PPV) capsids was solved using X-ray crystallography and was found to be similar to the related canine parvovirus (CPV) and minute virus of mice (MVM). The PPV capsid protein has 57 % and 49 % amino acid sequence identity with CPV and MVM, respectively, but the degree of conservation of surface-exposed residues is lower than average. Consequently, most of the structural differences are on the surface and are the probable cause of the known variability in antigenicity and host range. The NADL-2 and Kresse strains of PPV have distinct tissue tropisms and pathogenicity, which are mediated by one or more of the amino acid residues 381, 386, and 436. These residues are on or near the surface of the virus capsid, where they are likely to be associated with virus-cell interactions.  相似文献   

11.
Newly synthesized structural polypeptides of parvovirus LuIII, VP1 (62,000 daltons) and VP2 (74,000 daltons), were detected in nuclei of synchronized, infected HeLa cells at 11 to 12 h postinfection, i.e., after cells had passed through the S phase of the cell cycle. At this time, most of intranuclear viral polypeptides were associated with the chromatin acidic proteins. However, 13 to 14 h postinfection, about one-third of intranuclear VP1 and VP2 also could be extracted in the fraction containing nuclear sap proteins. According to pulse-chase experiments, VP1 and VP2 accumulated in the chromatin with a time lag of 20 to 30 min. About 90% of these chromatin-associated viral polypeptides represented empty viral capsids. In addition, chromatin prepared at 14 h postinfection contained 90 to 95% of the total intranuclear viral 16S replicative-form DNA. Since viral replicative-form DNA and empty viral capsids seem to be associated specifically with cellular chromatin, we assume that this subnuclear structure is the site of the synthesis of progeny viral DNA and the formation of complete virions.  相似文献   

12.
J Bergeron  B Hbert    P Tijssen 《Journal of virology》1996,70(4):2508-2515
The Kresse strain of porcine parvovirus (PPV) was cloned into pUC19, and independent infectious clones were sequenced. The PPV Kresse and NADL-2 strains, which have different pathogenicities, shared an identical genomic organization and a high degree of sequence identity. Partial genomes (1.5 or 1.6 kb) of 15 field isolates were also amplified by PCR in regions with significant sequence differences between the laboratory strains. Five amino acid differences were consistently present within the VP1/VP2 coding region of the Kresse strain and virulent field isolates. A number of inconsistent point mutations were also found throughout the genomes of field isolates. In addition, among those with the vaccine amino acid profile, all but one isolate (IAF-3) contained a 127-bp noncoding direct repeat downstream of the capsid protein gene. The one exception was also the only vaccine-type PPV obtained from a mummified fetus. In order to identify genetic elements responsible for the distinct tropism (and possibly the pathology) of the Kresse strain, in vitro cell systems which differentiated the virulent from the vaccinal strains were established. Subsequently, chimeric infectious clones of the Kresse and NADL-2 strains were used to identify the allotropic determinant located in the VP1/VP2 region. The transfer of the BglII fragment of the Kresse genome, containing three amino acid differences, into the NADL-2 background, or the opposite construct, caused the phenotype of the target genome to revert to that of the parent strain of the BglII fragment. Prediction of the localization of amino acid differences on the basis of canine parvovirus capsid structure indicates that each is located on or near the outer surface of the virion. In particular, the position of one mutation (S-436-->P) maps by analogy to the threefold spike, the most accessible region of the capsid.  相似文献   

13.
对猪细小病毒(PPV)SD-68株印2基因进行的克隆和序列测定表明:SD-68株VP2基因全长1740bD,编码579个氨基酸残基组成的多肽;PPVSD-68株与Kresse株、SY-99株、NADL-2(5075)株、NADL-2(4973)株、US-1株的VP2基因比较,核苷酸的同源性在99%以上,氨基酸的同源性在96%以上。进化树分析表明SD-68株与kresse株的亲缘关系最近;在决定毒株组织嗜性的关键氨基酸位点上(378,383及436),SD-68株与kresse株的差异最小,据此推测SD-68株的组织嗜性与Kresse株相似,即SD-68株属皮炎型PPV;而比较弱毒株NADL-2、SD-68和强毒株kresse VP2的氨基酸差异后发现,215、378和383可能是决定PPV致病性强弱的关键位点。  相似文献   

14.
本文建立了一种同时检测猪圆环病毒2型(PCV2)、细小病毒(PPV)、及伪狂犬病毒(PRV)疫苗株与野毒株的多重PCR方法.根据GenBank上发表的PCV2、PPV和PRV gB、gE基因序列,针对各自保守区各设计一对特异性引物,用这四对引物对同一样品中的PCV2、PPV和PRV gB、gE进行检测,结果可同时扩增出269bp(PCV2)、581bp(PPV)、372bP(PRV gB)及147bp(PRV gE)四条特异性片段.对JEV、PRRSRV、大肠杆菌和双蒸水的PCR扩增结果均为阴性;敏感性测定结果表明,该多重PCR能检出10pg PCV2、PPV和PRV gB、gE检测敏感度分别为10^-6.2、10^-3.8、10^-5.8TCID50的模板.该方法的建立对临床上进行这三种疾病的鉴别诊断和混合感染的检测具有重要意义.  相似文献   

15.
Simian parvovirus is a recently discovered parvovirus that was first isolated from cynomolgus monkeys. It is similar to human B19 parvovirus in terms of virus genome, tropism for erythroid cells, and characteristic pathology in natural infections. Cynomolgus monkeys were infected with simian parvovirus to investigate their potential usefulness as an animal model of human B19 parvovirus. Six adult female cynomolgus monkeys were inoculated with purified simian parvovirus by the intravenous or intranasal route and monitored for evidence of clinical abnormalities; this included the preparation of complete hematological profiles. Viremia and simian parvovirus-specific antibody were determined in infected monkeys by dot blot and Western blot assays, respectively. Bone marrow was examined at necropsy 6, 10, or 15 days postinfection. All of the monkeys developed a smoldering, low-grade viremia that peaked approximately 10 to 12 days after inoculation. Peak viremia coincided with the appearance of specific antibody and was followed by sudden clearance of the virus and complete, but transient, absence of reticulocytes from the peripheral blood. Clinical signs were mild and involved mainly anorexia and slight weight loss. Infection was associated with a mild decrease in hemoglobin, hematocrit, and erythrocyte numbers. Bone marrow showed marked destruction of erythroid cells coincident with peak viremia. Our findings indicate that infection of healthy monkeys by simian parvovirus is self-limited and mild, with transient cessation of erythropoiesis. Our study has reproduced Koch's postulates and further shown that simian parvovirus infection of monkeys is almost identical to human B19 parvovirus infection of humans. Accordingly, this animal model may prove valuable in the study of the pathogenesis of B19 virus infection.  相似文献   

16.
Aleutian mink disease parvovirus (ADV) mRNAs are found in macrophages in lymph nodes and peritoneal exudate cells from ADV-infected mink. Therefore, we developed an in vitro infection system for ADV by using primary cultures of mink macrophages or macrophage cell lines. In peritoneal macrophage cultures from adult mink, virulent ADV-Utah I strain showed nuclear expression of viral antigens with fluorescein isothiocyanate-labeled ADV-infected mink serum, but delineation of specific viral proteins could not be confirmed by immunoblot analysis. Amplification of ADV DNA and production of replicative-form DNA were observed in mink macrophages by Southern blot analysis; however, virus could not be serially propagated. The human macrophage cell line U937 exhibited clear nuclear expression of viral antigens after infection with ADV-Utah I but not with tissue culture-adapted ADV-G. In U937 cells, ADV-Utah I produced mRNA, replicative-form DNA, virion DNA, and structural and nonstructural proteins; however, virus could not be serially passaged nor could [3H]thymidine-labeled virions be observed by density gradient analysis. These findings indicated that ADV-Utah I infection in U937 cells was not fully permissive and that there is another restricted step between gene amplification and/or viral protein expression and production of infectious virions. Treatment with the macrophage activator phorbol 12-myristate 13-acetate after adsorption of virus reduced the frequency of ADV-positive U937 cells but clearly increased that of human macrophage line THP-1 cells. These results suggested that ADV replication may depend on conditions influenced by the differentiation state of macrophages. U937 cells may be useful as an in vitro model system for the analysis of the immune disorder caused by ADV infection of macrophages.  相似文献   

17.
African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter–β-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.  相似文献   

18.
We constructed a physical map of Kilham rat virus strains 171 DNA by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments.  相似文献   

19.
Defective interfering particles of parvovirus H-1.   总被引:10,自引:8,他引:2       下载免费PDF全文
S L Rhode  rd 《Journal of virology》1978,27(2):347-356
Defective interfering particles of the parvovirus H-1 were produced by serial propagation at high multiplicities of infection. Such particles interfere with the synthesis of capsid proteins and infectious virus of standard H-1. The interference is sensitive to UV irradiation, dependent on the multiplicity of the challenge virus, and is active in heterotypic infections against parvovirus H-3 or LuIII. Defective interfering particle genomes have alterations characterized by integral numbers (1 to 10 or more) of a 60-base-pair addition in the neighborhood of the origin of replicative-form DNA replication and deletions that are located primarily within two regions, 32 to 44 or 80 to 90 on the genome map. Some of the implications of these findings are discussed.  相似文献   

20.
Plasma from a child with homozygous sickle-cell disease, sampled during the early phase of an aplastic crisis, contained human parvovirus B19 virions. Plasma taken 10 days later (during the convalescent phase) contained both immunoglobulin M and immunoglobulin G antibodies directed against two viral polypeptides with apparent molecular weights of 83,000 and 58,000 which were present exclusively in the particulate fraction of the plasma taken during the acute phase. These two protein species comigrated at 110S on neutral sucrose velocity gradients with the B19 viral DNA and thus appear to constitute the viral capsid polypeptides. The B19 genome was molecularly cloned into a bacterial plasmid vector. Restriction endonuclease fragments of this cloned B19 genome were treated with BAL 31 and shotgun cloned into the open reading frame expression vector pJS413. Two expression constructs containing B19 sequences from different halves of the viral genome were obtained, which directed the synthesis, in bacteria, of segments of virally encoded protein. These polypeptide fragments were then purified and used to immunize rabbits. Antibodies against a protein sequence specified between nucleotides 2897 and 3749 recognized both the 83- and 58-kilodalton capsid polypeptides in aplastic plasma taken during the acute phase and detected similar proteins in the tissues of a stillborn fetus which had been infected transplacentally with B19. Antibodies against a protein sequence encoded in the other half of the B19 genome (nucleotides 1072 through 2044) did not react specifically with any protein in plasma taken during the acute phase but recognized three nonstructural polypeptides of 71, 63, and 52 kilodaltons present in the liver and, at lower levels, in some other tissues of the transplacentally infected fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号