首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Complex organization of zein genes in maize   总被引:1,自引:0,他引:1  
We have examined the fragments of maize nuclear DNA that are homologous to three cloned cDNAs prepared from zein mRNA. Southern blots of high molecular weight ( > 40 kb) maize nuclear DNA cleaved with BamHI, HindIII or EcoRI were hybridized to three zein cDNA plasmid probes. Multiple restriction fragments in a wide range of size classes were observed to hybridize with all three probes. Our results indicate the occurrence of families of genes in the maize genome that are related by their sequences to a given zein mRNA sequence.  相似文献   

2.
The DNA of the nuclear polyhedrosis virus of the alfalfa looper, Autographa californica (AcNPV), has been analyzed with restriction endonucleases BamHI and SmaI. The molecular weight of the BamHI fragments, SmaI fragments, and BamHI + SmaI fragments has been determined. The molecular weight of AcNPV DNA is calculated to be about 82 million. A presumptive physical map of the BamHI and SmaI restriction sites on the AcNPV genome has been constructed.  相似文献   

3.
4.
A lambda derivative with DNA resistant to attack by R. BamHI has been obtained following mutagenesis to remove a single target for this enzyme. The two central targets for R. BamHI were then introduced into the genome of this phage and the DNA between them removed in vitro to give a lambda insertion vector for fragments of DNA produced by digestion with R. BamHI.  相似文献   

5.
The physical map for the genome of Spodoptera frugiperda nuclear polyhedrosis virus was constructed for restriction endonucleases BamHI and HindIII. The ordering of the restriction fragments was accomplished by cross-blot hybridization of BamHI, HindIII, and EcoRI fragments. The alignment of the HindIII fragments within the BamHI map was achieved by double digestion with the two restriction endonucleases followed by cross-blot hybridization. The results showed that the viral genome consisted of mainly unique sequences. In addition, the circular nature of the viral genome was reaffirmed.  相似文献   

6.
Fragments produced by partial digestion of plastid DNA fromZea mays withEco RI were cloned in Charon 4A. A circular, fine structure physical map of the plastid DNA was then constructed from restriction endonucleaseSal I,Pst I,Eco RI, andBam HI recognition site maps of cloned overlapping segments of the plastid genome. These fragments were assigned molecular weights by reference to size markers from both pBR322 and lambda phage DNA. Because of the detail and extent of the derived map, it has been possible to construct a coordinate system which has a unique zero point and within which all the restriction fragments and previously described structural features can be mapped. A computer program was constructed which will display in a circular fashion any of the above features using an X-Y plotter.  相似文献   

7.
The accumulation of amyloplast DNA during endosperm development was studied in two cultivars of spring wheat, Triticum aestivum L. Chinese Spring (CS) and Spica, small and relatively larger-grained cultivars, respectively. Endosperms were isolated between 9 and 45 days post anthesis (dpa) and the amyloplast DNA content of endosperm nucleic-acid extracts was measured by quantitative hybridisation with a homologous chloroplast-DNA probe. The endosperm cells of CS and Spica accumulated amyloplast DNA during development in a similar way. In both cultivars there was a large increase in the amount of plastid DNA (ptDNA) per endosperm between 9 and about 15 dpa, after which there was no further increase. Because nuclear DNA continued to accumulate until 24 dpa, the percentage contribution of amyloplast DNA to total DNA fluctuated in both cultivars during development, reaching maxima at 12 dpa of about 1.00% and 0.85%, and dropping to apparently constant levels of 0.60% and 0.52% in CS and Spica, respectively, by 24 dpa. In both cultivars, the average number of ptDNA copies per amyloplast was calculated to increase from about 10 copies at 9 dpa to about 50 copies in the mature amyloplasts at 31 dpa. However, the heavier endosperms of Spica contain more cells than those of CS and the varieties therefore differed in the amount of ptDNA that accumulated per endosperm: Spica endosperms accumulated 110 ng of ptDNA by 15 dpa, compared with only 85 ng in CS. The apparent accumulation of ptDNA copies in wheat amyloplasts during endosperm development contrasts with the decline in chloroplast-DNA copies in wheat chloroplasts during leaf development.Abbreviations CS Chinese Spring - ctDNA chloroplast DNA - dpa days post anthesis - kbp 103 base pairs - nDNA nuclear DNA - ptDNA plastid DNA - mtDNA mitochondrial DNA  相似文献   

8.
A restriction fragment library containing Autographa californica nuclear polyhedrosis virus (AcNPV) DNA was constructed by using the pBR322 plasmid as a vector. The library, which is representative of more than 95% of the viral genome, consists of 2 of the 7 BamHI fragments, 12 of the 24 HindIII fragments, and 23 of the 24 EcoRI fragments. The cloned fragments were characterized and used to generate physical maps of the genome by hybridizing nick-translated recombinant plasmid to Southern blots of AcNPV DNA digested with SmaI, BamHI, XhoI, PstI, HindIII, and EcoRI restriction endonucleases. This information was used to define our strain of AcNPV (HR3) with respect to other strains for which physical maps have been previously published. The hybridization data also indicate that reiteration of DNA sequences occurs at the HindIII-L and -Q regions of the genome.  相似文献   

9.
Summary The chloroplast genome of the IS1112C cytoplasm of sorghum was mapped by the construction of a Bam-HI library in pUC8, and hybridization with BamHI, SalI, and PstI digests of chloroplast DNA (ctDNA) of sorghum and maize. The molecules are extensively colinear, with only one of 13 SalI fragments differing slightly from maize. Seven of 70 restriction sites differed in the two species. A total molecular size of ca. 138 kb was estimated for sorghum. The inverted repeat was not conserved between sorghum and maize, as revealed by a slightly larger BamHI 16S rDNA fragment in sorghum. Homology of a sequence adjacent to the bcl gene and one end of the inverted repeat was detected. These homologies were also observed in maize, and suggest that the ctDNA genomes of sorghum and maize share small reiterations of sequences of the inverted repeat.USDA-ARS  相似文献   

10.
In the maize pathogenic fungusUstilago maydis integration of transforming DNA at homologous or heterologous sites is often accompanied by duplications of the DNA. We show that it is possible to generate single-copy integration events with high efficiency by restriction enzyme-mediated integration (REMI). In about 50% of cases, a plasmid that contains a singleBamHI site is integrated at chromosomalBamHI sites, ifBamHI is added to the transformation mixtures. In the other cases it appears that integration events have also occurred preferentially atBamHI sites, but without restoration of the recognition sites. Using REMI we have generated approximately 1000 insertion mutants. Pathogenicity tests demonstrated that about 1–2% of these mutants were unable to induce symptoms when testedin planta. For two of the mutants we have shown that the phenotype is linked to the insertion event.  相似文献   

11.
Chloroplast ribosomal DNA from Euglena gracilis was partially purified, digested with restriction endonucleases BamHI or EcoRI and cloned into bacterial plasmids. Plasmids containing the ribosomal DNA were identified by their ability to hybridize to chloroplast ribosomal RNA and were physically mapped using restriction endonucleases BamHI, EcoRI, HindIII and HpaI. The nucleotide sequences coding for the 16S and the 23S chloroplast ribosomal RNAs were located on these plasmids by hybridizing the individual RNAs to denatured restriction endonuclease DNA fragments immobilized on nitrocellulose filters. Restriction endonuclease fragments from chloroplast DNA were analyzed in a similar fashion. These data permitted the localization on a BamHI map of the chloroplast DNA three tandemly arranged chloroplast ribosomal RNA genes. Each ribosomal RNA gene consisted of a 4.6 kilobase pair region coding for the 16S and 23S ribosomal RNAs and a 0.8 kilobase pair spacer region. The chloroplast ribosomal DNA represented 12% of the chloroplast DNA and is G + C rich.  相似文献   

12.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

13.
Restriction endonuclease maps of two double-stranded plasmid-like DNAs, 6180 and 5175 bp each, isolated as linear molecules from the mitochondria of S-type cytoplasmic male-sterile maize were prepared. Twelve cleavage sites were mapped in each using HindIII, XhoI, EcoRI, SacI, XbaI, SalI, BamHI, and BstEII. BamHI does not cleave S-1 DNA and SalI does not cleave S-2 DNA. A 1150-bp homologous sequence in addition to the 200-bp terminal inverted repeats was terminally oriented on both DNAs by reciprocal hybridization and heteroduplex analysis.  相似文献   

14.
A physical map of the 88 × 106 dalton, circular DNA genome of Autographa californica nuclear polyhedrosis virus was constructed. The complete order of BamHI and XmaI restriction enzyme sites was determined. The EcoRI and HindIII fragments were partially ordered, and their general locations, relative to the BamHI and XmaI maps, were determined. Alterations in the restriction endonuclease fragment patterns of natural genotypic variants of A. californica nuclear polyhedrosis virus, including Trichoplusia ni MEV nuclear polyhedrosis virus, were located on the physical map. Alterations were found throughout the A. californica nuclear polyhedrosis virus DNA genome.  相似文献   

15.
Genes encoding extracellular β-lactamases (EC 3.5.2.6) of Gram-positive Streptomyces badius, Streptomyces cacaoi and Streptomyces fradiae have been cloned into Streptomyces lividans. The β-lactamase gene of S. badius was initially isolated on a 7 kb BamHI fragment and further located on a 1300 bp DNA segment. An 11 kb BamHI fragment was isolated encompassing the S. cacaoi β-lactamase gene, which was subcloned to a 1250 bp DNA fragment. The β-lactamase gene of S. fradiae was cloned on an 8 kb BamHI fragment and mapped to a 4 kb DNA segment. Each of the three BamHI fragments encompassing the β-lactamase genes hybridized to a BamHI fragment of the corresponding size in chromosomal DNA from the respective strain used for cloning. The activities of the three β-lactamases were predominantly found to be extracellular in the S. lividans recombinants. The S. badius and S. cacaoi β-lactamases exhibited a 10–100-times lower activity in S. lividans, whereas the S. fradiae β-lactamase showed an approximately 10-fold higher activity in the cloned state, compared with the activities found in the original strains.  相似文献   

16.
17.
18.
A physical restriction map of the mitochondrial genome from one clone (TCC 854) of the sexually isolated populations (syngens) of the morphologically uniform species Pandorina morum Bory has been constructed using restriction endonucleases Ava I, Bam HI, Bgl II, Eco RI, Kpn I, and Pst I. The 20 kb linear genome can easily be separated from plastid DNA, nuclear satellite rDNA, and main band (nuclear) DNA on a Hoechst/CsCl buoyant density gradient. The Pandorina mitochondrial DNA shows sufficient similarity to the 16 kb mitochondrial genome of Chlamydomonas reinhardtii to cross-hybridize, and also hybridizes with a probe containing maize mitochondrial 18S rRNA genes. Double digests, self-probing, and Bal31 exonuclease experiments suggest that 1.8 to 3.3 kb of sequence is repeated at each end of the genome as an inverted repeat. Mitochondrial genome sizes of other P. morum syngens were found to range from ca. 20 to ca. 38 kb. The mitochondrial genome should be valuable for taxonomic studies; it can be used for comparative organellar studies; and it should be of interest to compare with that of other plant and animal mitochondrial genomes.  相似文献   

19.
20.
The chloroplast DNA of Chlamydomonas reinhardii has been examined by restriction endonuclease analysis. EcoRI, BamHI and BglII produce 30, 17 and 12 fragments, respectively, whose sites have been determined by electron microscopy and by comparative gel electrophoresis. These fragments have been ordered into a circular map which corresponds to a genome size of Mr = 126 × 106. The map was established by comparing the double digests of individual restriction fragments and by hybridizing purified labelled fragments to restriction enzyme digests of chloroplast DNA. The restriction fragments were isolated by molecular cloning or by preparative agarose gel electrophoresis.The two sets of chloroplast ribosomal RNA genes are contained within two inverted repeats of 13 × 106 molecular weight, which are located nearly at opposite sides of the map. In addition, the mapping studies have revealed the presence of short repeated base sequences which are interspersed throughout the chloroplast genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号