首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two cvs. of wheat differently sensitive to many stress factors (cv. Ofanto less sensitive than cv. Adamello) were grown in a controlled environment with cadmium near threshold concentrations supplying the metal at equal-effect concentrations. Cd excess determined in both cvs. a reduction in water and turgor potential but a maintenance of relative water content. Cv Ofanto showed a higher capacity of Cd exclusion from roots but a higher translocation to shoots in comparison with cv. Adamello. Notwithstanding the higher metal concentration in leaves of cv. Ofanto, K+ leakage was more pronounced in Adamello suggesting that mechanisms of Cd detoxification and tolerance such as vacuolar compartmentalisation were activated in the first one. In Adamello plants, ethylene rose at the lowest metal concentration and the activation in roots of the antioxidative enzymes catalase, ascorbate peroxidase and guaiacol peroxidase came into play whereas in Ofanto ethylene and catalase did not change. Following cadmium treatment, superoxide dismutase activity was reduced or remained at the control value in roots and in leaves. For both cultivars ascorbate peroxidase, syringaldazine peroxidase and guaiacol peroxidase activities were always higher in roots than in leaves. These activities were induced by Cd in Ofanto leaves, whereas in Adamello leaves they remained at control levels or increased somewhat at the highest metal concentration. Cadmium changed the peroxidase isozyme pattern in both cultivars. Cv. Ofanto showed, as for other stress such as drought, salinity, nickel and copper, a co-tolerance towards Cd. Analogies in the response to other metals such as copper could be found in activation of catalase at the lower metal concentration in cv. Adamello and in the induction of ascorbate peroxidase in leaves of cv. Ofanto.  相似文献   

2.
Copper is a catalyst in the formation of reactive free radicals and its toxicity may be due, at least in part, to oxidative damage. The response of thylakoid‐bound and stromal antioxidative enzymes against the generation of superoxide radical was investigated in seedlings of wheat ( Triticum durum L. cv. Adamello) grown in hydroponic culture for 10 days and subjected to 10 and 50 µ M copper treatments. Electron spin resonance of roots evidenced a spectrum of copper, the intensity of which increased with the treatment, whereas the carbon‐centered free radical spectrum detected in the control leaves was not seen anymore in the treated samples. As well as thylakoids, photosystem II (PSII) particles were able to produce the superoxide radical. Increased superoxide production both by thylakoids and PSII was observed in the sample treated with 50 µ M Cu. Induction of thylakoid‐bound and stromal antioxidative enzymes, with the exception of dehydroascorbate reductase, was also detected in leaves treated with the highest copper concentration. No Mn‐superoxide dismutase (SOD, EC 1.15.1.1) was detected in thylakoids of wheat. Both stromal and thylakoid‐bound SOD were CuZn‐SOD with 16.2‐kDa subunits. Both western blotting and immuno‐electron microscopy showed that the SOD subunit was recognized by a polyclonal antibody against glyoxisomal CuZn‐SOD from watermelon cotyledon. In the stroma of wheat, ascorbate peroxidase showed at least three well‐resolved bands differently induced by copper treatments.  相似文献   

3.
4.
5.
We analyzed antioxidative defenses, photosynthesis, and pigments (especially xanthophyll-cycle components) in two wheat (Triticum durum Desf.) cultivars, Adamello and Ofanto, during dehydration and rehydration to determine the difference in their sensitivities to drought and to elucidate the role of different protective mechanisms against oxidative stress. Drought caused a more pronounced inhibition in growth and photosynthetic rates in the more sensitive cv Adamello compared with the relatively tolerant cv Ofanto. During dehydration the glutathione content decreased in both wheat cultivars, but only cv Adamello showed a significant increase in glutathione reductase and hydrogen peroxide-glutathione peroxidase activities. The activation states of two sulfhydryl-containing chloroplast enzymes, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase and fructose-1,6-bisphosphatase, were maintained at control levels during dehydration and rehydration in both cultivars. This indicates that the defense systems involved are efficient in the protection of sulfhydryl groups against oxidation. Drought did not cause significant effects on lipid peroxidation. Upon dehydration, a decline in chlorophyll a, lutein, neoxanthin, and β-carotene contents, and an increase in the pool of de-epoxidized xanthophyll-cycle components (i.e. zeaxanthin and antheraxanthin), were evident only in cv Adamello. Accordingly, after exposure to drought, cv Adamello showed a larger reduction in the actual photosystem II photochemical efficiency and a higher increase in nonradiative energy dissipation than cv Ofanto. Although differences in zeaxanthin content were not sufficient to explain the difference in drought tolerance between the two cultivars, zeaxanthin formation may be relevant in avoiding irreversible damage to photosystem II in the more sensitive cultivar.  相似文献   

6.
The hydrogen peroxide that is photoproduced in thylakoids isscavenged by the thylakoid-bound ascorbate peroxidase (tAPX)[Miyake and Asada (1992) Plant Cell Physiol. 33: 541]. tAPXwas purified from spinach thylakoids to homogeneity as judgedby SDS-polyacrylamide gel electrophoresis, and its molecularproperties were studied. Spinach tAPX was a monomer with a molecularweight of 40,000, which is about 10,000 higher than that ofthe stromal ascorbate peroxidase (sAPX) from spinach chloroplasts.tAPX cross-reacted with the antibody raised against sAPX fromtea leaves, as determined by Western blotting, which also providedevidence for the higher molecular weight of tAPX from spinachthylakoids than that of tea sAPX. The amino acid sequence ofthe amino-terminal region of tAPX showed a low degree of homologyto those of cytosolic APXs from spinach, pea and Arabidopsisthaliana, but a high degree of homology to that of stromal APXfrom tea. Thus, the amino-terminal region of tAPX seems notto be a domain required for binding of the enzyme to the thylakoidmembranes. tAPX contained protoheme IX, as identified by itspyridine hemochromogen, and gave a Soret peak at 403 nm and433 nm with an a band at 555 nm in its oxidized and reducedforms, respectively. Resembling sAPX but differing from cytosolicAPX, tAPX showed high specificity for ascorbate as the electrondonor. tAPX was inhibited by cyanide, thiol-modifying reagents,thiols and several suicide inhibitors, such as hydroxyurea andp-aminophenol. 1Present address: Beijing Vegetable Research Centre, PO Box2443, Beijing, China.  相似文献   

7.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

8.
9.
Blue‐green algae (cyanobacteria) have evolved as the most primitive, oxygenic, plant‐type photosynthetic organisms. Within a single prokaryotic cell, they have uniquely accommodated both oxygenic photosynthesis and aerobic respiration, which are known to produce superoxide and hydrogen peroxide as inevitable byproducts. Two types of superoxide dismutase have been characterized in both N2‐fixing and non‐N2‐fixing cyanobacteria, namely cytosolic iron‐containing superoxide dismutase and thylakoid‐bound manganese‐containing superoxide dismutase. No qualitative differences between various cell types (vegetative cells, heterocysts) were found. In contrast to chloroplasts, most of the cyanobacterial species show catalatic activity. From two species the corresponding enzymes have been characterized as typical prokaryotic (bifunctional) catalase‐peroxidases with homologies to cytochrome c peroxidases and ascorbate peroxidases. In addition to catalatic activity, some strains exhibit ascorbate peroxidase activity, but to date there are no reports detailing purification and characterization.
Cyanobacteria were found to contain low intracellular ascorbate concentrations (30‐100 µ M ) and 2‐5 m M glutathione. Both monodehydroascorbate and glutathione reductase activities were detected in most species examined, whereas dehydroascorbate reductase activity was absent. The question as to whether a glutathione‐ascorbate cycle exists in cyanobacteria cannot be answered at present.  相似文献   

10.
The present work describes, for the first time, the changes that take place in the leaf apoplastic antioxidant defenses in response to NaCl stress in two pea (Pisum sativum) cultivars (cv Lincoln and cv Puget) showing different degrees of sensitivity to high NaCl concentrations. The results showed that only superoxide dismutase, and probably dehydroascorbate reductase (DHAR), were present in the leaf apoplastic space, whereas ascorbate (ASC) peroxidase, monodehydroascorbate reductase (MDHAR), and glutathione (GSH) reductase (GR) seemed to be absent. Both ASC and GSH were detected in the leaf apoplastic space and although their absolute levels did not change in response to salt stress, the ASC/dehydroascorbate and GSH to GSH oxidized form ratios decreased progressively with the severity of the stress. Apoplastic superoxide dismutase activity was induced in NaCl-treated pea cv Puget but decreased in NaCl-treated pea cv Lincoln. An increase in DHAR and GR and a decrease in ASC peroxidase, MDHAR, ASC, and GSH levels was observed in the symplast from NaCl-treated pea cv Lincoln, whereas in pea cv Puget an increase in DHAR, GR, and MDHAR occurred. The results suggest a strong interaction between both cell compartments in the control of the apoplastic ASC content in pea leaves. However, this anti-oxidative response does not seem to be sufficient to remove the harmful effects of high salinity. This finding is more evident in pea cv Lincoln, which is characterized by a greater inhibition of the growth response and by a higher rise in the apoplastic hydrogen peroxide content, O(2)(.-) production and thiobarbituric acid-reactive substances, and CO protein levels. This NaCl-induced oxidative stress in the apoplasts might be related to the appearance of highly localized O(2)(.-)/H(2)O(2)-induced necrotic lesions in the minor veins in NaCl-treated pea plants. It is possible that both the different anti-oxidative capacity and the NaCl-induced response in the apoplast and in the symplast from pea cv Puget in comparison with pea cv Lincoln contributes to a better protection of pea cv Puget against salt stress.  相似文献   

11.
12.
To analyze the physiological role of dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants expressing a human DHAR gene in chloroplasts were biochemically characterized and tested for responses to various stresses. Fully expanded leaves of transgenic plants had about 2.29 times higher DHAR activity (units/g fresh wt) than non-transgenic (NT) plants. Interestingly, transgenic plants also showed a 1.43 times higher glutathione reductase activity than NT plants. As a result, the ratio of AsA/DHA was changed from 0.21 to 0.48, even though total ascorbate content was not significantly changed. When tobacco leaf discs were subjected to methyl viologen (MV) at 5 mumol/L and hydrogen peroxide (H2O2) at 200 mmol/L, transgenic plants showed about a 40% and 25% reduction in membrane damage relative to NT plants, respectively. Furthermore, transgenic seedlings showed enhanced tolerance to low temperature (15 degrees C) and NaCl (100 mmol/L) compared to NT plants. These results suggest that a human derived DHAR properly works for the protection against oxidative stress in plants.  相似文献   

13.
Effects of exogenous salicylic acid (SA) on plant growth, contents of Na, K, Ca and Mg, activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and contents of ascorbate and glutathione were investigated in tomato (Lycopersicon esculentum L.) plants treated with 100 mM NaCl. NaCl treatment significantly increased H2O2 content and lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (TBARS). A foliar spray of 1 mM SA significantly decreased lipid peroxidation caused by NaCl and improved the plant growth. This alleviation of NaCl toxicity by SA was related to decreases in Na contents, increases in K and Mg contents in shoots and roots, and increases in the activities of SOD, CAT, GPX and DHAR and the contents of ascorbate and glutathione.  相似文献   

14.
15.
The effect of simultaneous expression of genes encoding three antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and dehydroascorbate (DHA) reductase (DHAR, EC 1.8.5.1), in the chloroplasts of tobacco plants was investigated under oxidative stress conditions. In previous studies, transgenic tobacco plants expressing both CuZnSOD and APX in chloroplast (CA plants), or DHAR in chloroplast showed enhanced tolerance to oxidative stresses, such as paraquat and salt. In this study, in order to develop transgenic plants that were more resistant to oxidative stress, we introduced the gene encoding DHAR into CA transgenic plants. Mature leaves of transgenic plants expressing all three antioxidant genes (CAD plants) had approximately 1.6–2.1 times higher DHAR activity, and higher ratios of reduced ascorbate (AsA) to DHA, and oxidized glutathione (GSSG) to reduced glutathione (GSH) compared to CA plants. CAD plants were more resistant to paraquat-induced stress, exhibiting only 18.1% reduction in membrane damage relative to CA plants. In addition, seedlings of CAD plants had enhanced tolerance to NaCI (100 mM) compared to CA plants. These results indicate that the simultaneous expression of multiple antioxidant enzymes, such as CuZnSOD, APX, and DHAR, in chloroplasts is more effective than single or double expression for developing transgenic plants with enhanced tolerance to multiple environmental stresses.  相似文献   

16.
We studied changes in antioxidant protection during ageing and senescence in chloroplasts of tobacco (Nicotiana tabacum L., cv. Wisconsin) with introduced SAG(12) promoter fused with ipt gene for cytokinin synthesis (transgenic plants with increased levels of cytokinins, SAG) or without it (control). Old leaves of SAG plants as well as their chloroplasts maintained higher physiological parameters compared to controls; accordingly, we concluded that their ageing was diverted due to increased cytokinin content. The chloroplast antioxidant protection did not decrease as well. Although antioxidant protection usually decreased in whole leaves of senescing control plants, ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) activity, which maintained the high redox state of ascorbate, increased in chloroplasts of old control leaves.  相似文献   

17.
The effect of plum pox virus (PPV) infection on the response of some antioxidant enzymes was studied in two apricot cultivars, which behaved differently against PPV infection: cultivar Real Fino (susceptible) and cultivar Stark Early Orange (cv. SEO, resistant). In the susceptible cultivar, PPV produced a decrease in Φ PSII, F 'v/ F 'm and Q p. PPV infection produced a drop in p -hydroxy mercury benzoic acid (pHMB)-sensitive ascorbate peroxidase, dehydroascorbate reductase and peroxidase in the soluble fraction from susceptible plants, whereas in the resistant apricot cultivar, pHMB-insensitive ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase and superoxide dismutase increased. However, catalase decreased in the soluble fractions from both infected cultivars. Long-term PPV infection also produced a decrease in the chloroplastic ascorbate–glutathione cycle enzymes only in the susceptible plants. As a consequence of PPV infection, an oxidative stress, indicated by an increase in lipid peroxidation and in protein oxidation, was produced only in the leaves from the susceptible cultivar which was also monitored by the diaminobenzidine peroxidase-coupled H2O2 probe. The loss of Φ PSII, indicative of activated oxygen species production, and the decrease in the levels of antioxidant enzymes in chloroplasts from susceptible plants could be responsible for the chlorosis symptoms observed. The results suggest that the higher antioxidant capacity showed by cv. SEO could be a consequence of a systemic acquired resistance induced by PPV penetration in stem tissue at the graft site and could be related, among other factors, to their resistance to PPV.  相似文献   

18.
Our previous study suggests that salicylic acid mediates tolerance in barley plants to paraquat (Ananieva et al. 2002). To further define the role of SA in paraquat induced responses, we analysed the capacity of the antioxidative defence system by measuring the activities of several antioxidative enzymes: superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1), catalase (CAT, EC 1.11.1.6), and guaiacol peroxidase (POX, EC 1.11.1.7). Twelve-day-old barley seedlings were supplied with 500 micromol/L SA or 10 micromol/L Pq via the transpiration stream and kept in the dark for 24 h. Then they were exposed to 100 micromol m(-2) s(-1) PAR and samples were taken 6 h after the light exposure. Treatment of seedlings with 10 micromol/L Pq reduced the activity of APX and GR, did not affect the activity of POX and DHAR but caused over a 40% increase in the activity of CAT. Pre-treatment with 500 micromol/L SA for 24 h in the dark before Pq application increased the activities of the studied enzymes in both the chloroplasts (SOD activity) and the other compartments of the cell (POX, CAT activity). The effect of SA pre-treatment was highly expressed on DHAR and POX activity. The data suggest that SA antagonizes Pq effects, via elicitation of an antioxidative response in barley plants.  相似文献   

19.
20.
Pang CH  Li K  Wang B 《Physiologia plantarum》2011,143(4):355-366
To evaluate the physiological importance of chloroplastic ascorbate peroxidase (CHLAPX) in the reactive oxygen species (ROS)‐scavenging system of a euhalophyte, we cloned the CHLAPX of Suaeda salsa (SsCHLAPX) encoding stromal APX (sAPX) and thylakoid‐bound APX. The stromal APX of S. salsa (Ss.sAPX) cDNA consists of 1726 nucleotides including an 1137‐bp open reading frame (ORF) and encodes 378 amino acids. The thylakoid‐bound APX of S. salsa (Ss.tAPX) cDNA consists of 1561 nucleotides, including a 1284‐bp ORF, and encodes 427 amino acids. The N‐terminal 378 amino acids of Ss.sAPX are identical with those of Ss.tAPX, whereas the C‐terminal 49 amino acids differ. Arabidopsis thaliana lines overexpressing Ss.sAPX and Ss.tAPX were constructed using Agrobacterium tumefaciens transformation methods. Under high light (1000 µmol m?2 s?1), malondialdehyde (MDA) content was lower in transgenic plants than in the wild type. Under high light, Fv/Fm and chlorophyll contents of both overexpressing lines and the wild type declined but were significantly higher in the overexpressing lines than in the wild type. The activities of APX (EC 1.11.1.11), catalase (CAT 1.11.1.6) and superoxide dismutase (SOD EC 1.15.1.1) were higher in the overexpressing lines than in the wild type. The transgenic plants showed increased tolerance to oxidative stress caused by high light. These results suggest that SsCHLAPX plays an important role in scavenging ROS in chloroplasts under stress conditions such as high light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号