首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The organization of testicular interstitial tissue of the spinifex hopping mouse, Notomys alexis differs from that of other rodents. It comprises between 10.3% and 17.3% (average 15.0%) of the total testicular volume, and is variable in its organization both at different locations within the testis of the one animal and among different individuals. Abundant, closely packed Leydig cells are usually present; however, in some regions large, thick-walled blood vessels and extensive peritubular lymphatic spaces, often lacking an endothelium adjacent to the Leydig cells, are also prominent. The Leydig cells in contact with the large blood vessels and lymphatics, unlike those in regions where lymph is sparse, are not densely packed and sometimes contain numerous lipid droplets. Ultrastructure of Leydig cells is typical of steroid-producing cells; however, mitochondria are often extremely large, unusual in shape or bizarely arranged in relation to one another. Also electrondense bodies displaying a paracrystalline-like internal structure of parallel, electron-dense filaments arranged in a lattice pattern occur in the cytoplasm of many cells. The significance of these unusual ultrastructural features and the organization of the interstitial tissue remain to be determined conclusively, but may relate to steroid synthesis, secretion and uptake.  相似文献   

2.
The seasonal testicular morphology and the morphometry of the interstitial tissue were studied in 62 camels at Algerian extreme arid region. The maximal testicular size was recorded during the rutting season. In this period, the interstitial tissue occupied high area and volume with significant increase of the intertubular constituent’s volume, hypertrophy of the Leydig cell, and maximal number of Leydig cells per testes. Therefore, the highest ratios of seminiferous tubules to interstitial tissue area and volume and the highest fraction of intertubular empty space were recorded during the non-rutting. The greater Leydig cell nucleus size was observed during the post-rutting season. Finally, the numerical density of Leydig cells did not significantly change over the year. These results provide information on the relationship between seasonal changes of camel testicular morphology and the histomorphometry of the testicular endocrine compartment in camels at the arid livestock conditions of the southeastern Algerian desert.  相似文献   

3.
Alkaline phosphatase activity in the intertubular tissue of the testes of the domestic fowl was examined using an ultracytochemical technique based on the lead capture method. In the interstitial tissue, the Leydig cells, transitional cells and the fibroblasts displayed enzyme activity on their cell membranes. Vacuoles located in the transitional cells were lined by reaction products of enzyme activity, whereas the vacuoles representing extracted lipid droplets and present mainly in the Leydig cells were free of enzyme activity. In the peritubular tissue the cell processes of fibroblasts showed enzyme activity on the cell membranes and in pinocytotic vesicles. Cell processes lying adjacent to blood vessels showed pronounced activity. In the blood vessel itself some activity was present in the basement membrane and the endothelium. The surface of the red blood cell showed moderate activity. The possible role of alkaline phosphatase in the transfer of hormone from the Leydig cells to the seminiferous tubules and from the seminiferous tubules to the interstitium is discussed. The myoid cells and their processes were devoid of enzyme activity.  相似文献   

4.
Summary Ethane dimethanesulphonate (EDS) was used as a specific cytotoxin to eliminate the Leydig cell population of the adult rat testis. Ultrastructural, morphometric and serum gonadotrophin and testosterone analysis was used to study the response of the intertubular tissue of the testis from 1 day to 10 weeks after EDS treatment. In control animals, the testis contained approximately 28 million Leydig cells and 8 million macrophages. Three to seven days after EDS treatment, Leydig cells were absent and serum testosterone was undetectable. Macrophage numbers increased three-fold by 3 days and returned to pretreatment values thereafter. At 2 and 3 weeks post-EDS, foetal-type Leydig cells (1–2 million per testis) appeared in proximity to perivascular and peritubular tissues, a feature also observed at 4 weeks when numerous such cells (15 million per testis) formed prominent clusters in perivascular and peritubular locations. Between 6 and 10 weeks after EDS treatment, the foetal-type Leydig cells were transformed morphologically into adult-type Leydig cells, they occupied central intertubular positions and their numbers were restored to pretreatment values. Regeneration of Leydig cells was reflected by elevated serum testosterone levels which returned towards the normal range. The results demonstrate the regenerative capacity of the testicular intertubular tissue and indicate a dual site of origin of Leydig cells which initially resemble foetal-type Leydig cells prior to establishing the adult-type Leydig cell population. The morphological pattern of Leydig cell regeneration suggests that in addition to gonadotrophic stimulation, local testicular factors from the seminiferous tubules may stimulate Leydig cell growth.  相似文献   

5.
Summary The effect of a single injection of 100 i.u. human chorionic gonadotrophin (hCG) upon the morphology of the rat testis was studied by light and electron-microscopy from 12–48 h after treatment. Twelve hours after injection of hCG, emigration of leukocytes occurred across the intertubular blood vessels and, both at this time and at 24 h, infiltrations of leukocytes were observed within the extracellular tissue spaces. Furthermore, 12 h after hCG, the seminiferous epithelium showed focal disruption of spermatogenesis involving germ cell degeneration and pyknosis. Focal damage to the seminiferous epithelium persisted at 24 h and 48 h after injection of hCG, the affected seminiferous tubules showing failure of spermiation, accumulation of extracellular vacuoles and degeneration or partial loss of spermatogonia and primary spermatocytes. The observations show that, after stimulation of the Leydig cells with hCG, the intertubular tissue exhibits an inflammatory-type response and this is associated with focal tissue destruction in the seminiferous tubules. It is concluded that a high dose of hCG exerts anti-spermatogenic effects upon the testis and raises the possibility of unexpected interference with tests of normal Leydig cell function in both laboratory and clinical investigations.  相似文献   

6.
Summary Rat testes were examined by conventional and immunolabeling transmission electron microscopy. Ultrastructurally identifiable continuous basement membranes were found around seminiferous tubules and the interstitial capillaries. Patches of basement membrane were, additionally, found on free surfaces of Leydig cells, between two Leydig cells, and in macrophage-Leydig cell contact sites. The ultrastructural findings were confirmed by immunocytochemical localization of laminin and collagen type IV in the same areas. A close association between the capillary basement membranes and the surfaces of perivascular Leydig cells was also observed. The possible basement membrane-mediated interactions of Leydig cells with other testicular structures, together with the novel bioactive products and regulators of Leydig cells, support the role of these cells as exceptionally complex regulatory centers of testicular functions.  相似文献   

7.
The intermediate filament protein nestin is predominantly expressed in some stem/progenitor cells and appears to be a useful molecular tool to characterise tumours originating from precursor cells of neuroectodermal and mesenchymal lineages. Leydig cells originate in the adult testis by differentiation from stem cells and express a variety of neural and neuroendocrine markers. The possible expression of the neural stem cell marker nestin in Leydig cells and testicular tumour cells was determined by analysing the patterns of nestin expression in normal and pathological human testes by Western blot and immunohistochemical methods. In normal testis, nestin was found in some vascular endothelial cells, a subset of peritubular spindle-shaped cells and some Leydig cells; spermatogenic and Sertoli cells were unstained. In normal Leydig cells, nestin was distributed in the perinuclear cytoplasm and accumulated in the crystalloids of Reinke with ageing. In non-tumour pathologies (cryptorchidism, impaired spermatogenesis), the seminiferous tubules were immunonegative, whereas hyperplastic Leydig cells showed cytoplasmic immunolabelling. In testicular malignancies, nestin was localised in the Sertoli cells of the seminiferous tubules affected with intratubular germ cell neoplasia, in the hyperplastic Leydig cells associated with these tumours and in some components (mesenchymal and neuroepithelial cells) of teratomas; spermatocytic and non-spermatocytic seminomas were unstained. Some vascular endothelial cells were immunolabelled in all tumour samples. Thus, nestin is expressed in a population of normal and hyperplastic Leydig cells and in Sertoli cells in the presence of intratubular germ-cell neoplasia. Nestin may be a good marker for identifying components of testicular teratomas.The two first authors participated equally in this workThis work was supported by a grant from the Fondo de Investigaciones Sanitarias (FIS 02/3003 to M.V.T. Lobo)  相似文献   

8.
BACKGROUND: Few data exist about the features of testicular microvasculature under normal and pathologic conditions. METHODS: The morphology and lectin affinity of testicular capillaries were examined in healthy boars and in unilateral and bilateral abdominal cryptorchid boars. RESULTS: The capillaries of scrotal testes contained a) the endothelial layer formed by two cells, b) the basal lamina constituted by collagen fibers and glycoconjugates with fucosyl, galactosyl, glucosyl, and neuraminic acid residues, and c) the pericyte layer formed by a single cell. These components participated in substrate exchange between blood and testicular tissue. The abdominal testes showed increased numbers of capillaries, which could exhibit a mature appearance, but also angiogenic or degenerative patterns. Angiogenesis was manifested in interstitial capillaries and was characterized by a) proliferation of endothelial cells, b) decreased thickness and decreased content of collagen fibers and glycoconjugates in the basal lamina, and c) lack of pericytes. Degenerative capillaries lay in association with seminiferous tubules and showed a) pyknotic endothelial cells; b) thickening, collagenization, and altered glycoconjugate content in the basal lamina; and c) increased development of pericytes. The angiogenesis of interstitial capillaries resulted in high vascular permeability, and the degeneration of intertubular capillaries led to defective substrate exchange between blood and seminiferous tubules. CONCLUSIONS: Unilateral abdominal cryptorchidism did not alter the morphology and function of capillaries in the scrotal testis. Unilateral and bilateral abdominal cryptorchidism resulted in increased numbers and abnormal morphology and function of capillaries in abdominal testes. The proliferation of interstitial capillaries correlated with the immaturity of Leydig cells, and the degeneration of intertubular capillaries correlated with the thickening of the lamina propria.  相似文献   

9.
Seminiferous tubule differentiation was related to the occurrence of germ cell neoplasia in 38 men, aged 17-47, treated surgically in childhood for cryptorchidism. Tissues from 46 testes obtained from biopsies taken as a neoplastic preventive procedure or whole testes removed because of GCT were evaluated quantitatively. Paraffin sections were treated with antibodies against placental like alkaline phosphatase (PLAP), a marker of germ cell neoplasia, and cytokeratin 18 (CK-18), a marker of immature Sertoli cells. Quality of spermatogenesis and number Leydig cells were assessed with a score count. Seminiferous tubules diameter, thickness of basal membrane and size of intertubular spaces were measured with image analysis software. In 17.4% of testes spermatogenesis was normal (9.9 points) (N) and neoplasia was not found there. In the other 38 specimens (83%) spermatogenesis was abnormal (A). When spermatogenesis was arrested or when germ cells were absent (3.7+/-1.8 points), neoplastic lesions were found in 13.1% of the specimens. In A group 5.1+/-7.1% of tubules contained immature Sertoli cells, while in N they were not found. Tubular diameter was significantly lower in A (161.5+/-31.8 microm) than in N (184.6+/-24.3 microm) and the percentage of seminiferous tubules with the thickening of tubular basal membrane was also greater in A. Intertubular spaces were significantly larger in A (49.9+/-18.6%) in comparison to N group (32.6+/-12.5%). Mean number of Leydig cells was similar in both groups. To conclude, in most of the formerly cryptorchid testes, despite surgical treatment, impaired seminiferous tubules differentiation is predominant. Germ cell neoplasia is present in testes with retarded seminiferous tubules differentiation. Retardation of seminiferous tubule differentiation consists of inhibited spermatogenesis, presence of tubules with immature Sertoli cells, decreased tubular diameter, increased thickness of basal membrane and enlarged intertubular spaces. Examination of testicular biopsy with respect to the state of seminiferous tubule differentiation may be helpful to predict the appearance of germ cell neoplasia in adult men with cryptorchidism in anamnesis. Orchiopexy of cryptorchid testes may not prevent the occurrence of features of testicular dysgenesis and the associated germ cell neoplasia.  相似文献   

10.
Summary The cytoarchitecture of the interstitial tissue of the rat kidney was studied by combined scanning and transmission electron microscopy. The renal interstitium is composed of an elaborate network of stellate sustentacular cells. In the cortex, sustentacular cells radiate thin branching processes to form a fine reticulum, which supports intertubular spaces. In the medulla, these cells extend thick processes horizontally along the basal surfaces of the thin limbs or vasa recta, reinforcing their attenuate walls. The horizontal processes connect with each other at their terminals, compartmentalizing the interstitial space into thin layers. The medullary sustentacular cells contain abundant small lipid droplets. The network of sustentacular cells houses vasa recta, keeping them in parallel position to each other and to the tubules. The arterial vasa recta are accompanied by pericytes, which frequently contain lipid droplets larger in size than those in the sustentacular cells. Venous vasa recta extend numerous basal microvilli, which anchor the venous wall to adjacent tubules or vessels. Numerous free cells, round in shape, are found in the sustentacular cell network, especially in the cortex. They consist of macrophages and occasional lymphocytes. Some macrophages extend long pseudopodia, while others make intimate contact with lymphocytes, suggesting their high level of activity.  相似文献   

11.
Bclw is a death-protecting member of the Bcl2 family of apoptosis-regulating proteins. Mice that are mutant for Bclw display progressive and nearly complete testicular degeneration. We performed a morphometric evaluation of testicular histopathology in Bclw-deficient male mice between 9 days postnatal (p9) through 1 yr of age. Germ cell loss began by p22, with only few germ cells remaining beyond 7 mo of age. A complete block to elongated spermatid development at step 13 occurred during the first wave of spermatogenesis, whereas other types of germ cells were lost sporadically. Depletion of Sertoli cells commenced between p20 and p23 and continued until 1 yr of age, when few, if any, Sertoli cells remained. Mitochondria appeared to be swollen and the cytoplasm dense by electron microscopy, but degenerating Bclw-deficient Sertoli cells failed to display classical features of apoptosis, such as chromatin condensation and nuclear fragmentation. Macrophages entered seminiferous tubules and formed foreign-body giant cells that engulfed and phagocytosed the degenerated Sertoli cells. Leydig cell hyperplasia was evident between 3 and 5 mo of age. However, beginning at 7 mo of age, Leydig cells underwent apoptosis, with dead cells being phagocytosed by macrophages. The aforementioned cell losses culminated in a testis-containing vasculature, intertubular phagocytic cells, and peritubular cell "ghosts." An RNA in situ hybridization study indicates that Bclw is expressed in Sertoli cells in the adult mouse testis. Consequently, the diploid germ cell death may be an indirect effect of defective Sertoli cell function. Western analysis was used to confirm that Bclw is not expressed in spermatids; thus, loss of this cell type most likely results from defective Sertoli cell function. Because Bclw does not appear to be expressed in Leydig cells, loss of Leydig cells in Bclw-deficient mice may result from depletion of Sertoli cells. Bclw-deficient mice serve as a unique model to study homeostasis of cell populations in the testis.  相似文献   

12.
Summary The postnatal development of intertubular cells and vessels and of the tubular lamina propria was studied in three locations of perfusion-fixed bovine testes from 31 animals ranging from 4 to 78 weeks. The postnatal morphological differentiation of the testis is not uniform, regional differences have to be considered. The intertubular cell population is composed of mesenchyme-like cells, fibrocytes, Leydig cells, peritubular cells and mononuclear cells. In 4 and 8-week-old testes mesenchyme-like cells are the dominating element. These pluripotent cells proliferate by frequent mitoses and are the precursors of Leydig cells, contractile peritubular cells and fibrocytes. Morphologically differentiated Leydig cells are encountered throughout the entire period of postnatal development. In 4-week-old testes degenerating fetal and newly formed postnatal Leydig cells are seen in juxtaposition to each other. From the 8th week on, only postnatal Leydig cells are present. Between 16 and 30 weeks large-scale degeneration of prepuberal Leydig cells is observed. The Leydig cells that survive this degenerative phase constitute the long-lasting adult population. 20–30% (numerically) of all intertubular cells at all ages are free mononuclear cells. These are found as lymphocytes, plasma cells, monocytes, macrophages and light intercalated cells (LIC). The latter are monocyte-derived, Leydig cell-associated typical cells of the bovine testis. The differentiation of the two main components of the tubular lamina propria, (i) basal lamina and (ii) peritubular cell sheath, seems to be effected rather independent from each other and also from hormonal signals important for the development of the germinal cells. The laminated basal lamina reaches nearly 3 m at 16 weeks and is later on continuously reduced. At 25 weeks the peritubular cells have transformed into contractile myofibroblasts. At this period the germinal epithelium is still in a prepuberal state.To Dr. E. Schilling, Mariensee, on the occasion of his 65th birthday  相似文献   

13.
Summary The effect of a single i.p. administration of ethane dimethanesulphonate (EDS) upon rat testicular histology was studied by light microscopy and morphometry up to 4 weeks after treatment. One day after injection the interstitial tissue exhibited degenerating Leydig cells, abundant pyknotic interstitial cells, deposition of cellular debris and extensive networks of fibrillar material. Macrophages contained greatly increased numbers of cytoplasmic inclusion bodies. From 3 to 7 days morphometric analysis showed that Leydig cells and cellular debris had disappeared from the interstitial tissue, leaving only macrophages, fibroblasts and lymphatic endothelial tissue. A very small number of new Leydig cells were seen on day 14, often located in peritubular or perivascular positions. Regeneration of foetal-like Leydig cells occurred by 4 weeks, their cytoplasm containing large lipid inclusions and, numerous Leydig cells were often observed closely applied to the walls of the seminiferous tubules. The observations suggest that, after experimental destruction and depletion of Leydig cells, an interstitial precursor cell, as yet unidentified, gives rise to a new Leydig cell population. EDS thus offers a valuable opportunity to study further the interactions between the seminiferous tubules and the interstitial tissue following the destruction and subsequent regeneration of the Leydig cells.  相似文献   

14.
Glutamine is often used to treat metabolic changes associated with anorexia-cachexia syndrome in patients with malignant neoplasms. Walker 256 tumor is an excellent model for studying these changes associated with cancer in different organs, including injuries in testicular functions. However, the effects of supplementing glutamine on testicular morphometry in this model have not yet been investigated. Thus, the objective of this study was to evaluate the effect of L-glutamine supplementation on testicular morphometry in rats transplanted with Walker 256 tumor cells. Forty puberty Wistar rats were divided into four groups: control without L-glutamine (C); control supplemented with L-glutamine (CG); inoculated with Walker 256 tumor cells (WT) and inoculated with Walker 256 tumor cells and supplemented with L-glutamine (WTG). The testicles were removed, weighed, fixed in Bouin, and included in paraffin for histomorphometric analysis. Walker 256 tumor caused quantitative changes in the tubular and intertubular compartments and tunica albuginea, with reductions in the percentages of lumen and tunica albuginea, number of Sertoli cells per gram of testis; number of Leydig cells; percentage of blood vessels and connective tissue in intertubule. However, glutamine supplementation prevented part of these changes caused by the tumor, presenting mainly a protective effect on the tunica albuginea and percentage of blood and lymph vessels in the intertubule. These results indicate the potential of L-glutamine was able to recover for testicular dysfunction associated with cancer.  相似文献   

15.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

16.
Three aspects of the control of movements of fluids and substances into, out of and inside the testis are discussed: the tubular barrier, the interstitial extracellular fluid and the testicular blood vessels. The functional basis for the tubular barrier is twofold; there are significant differences in the concentration of many substances inside and outside the tubules and marker substances enter or leave the tubular fluid at widely different rates, depending on lipid solubility and the presence of specific carrier systems. The anatomical basis for this barrier appears to be the specialized junctions between adjacent pairs of Sertoli cells. The barrier develops only at puberty, as the first cells undergo meiosis, but the development may not be as sudden as previously believed. The barrier breaks down after efferent duct ligation when spermatogenesis is disrupted. Techniques for measuring the volume, the turnover rate, the composition and fate of the interstitial extracellular fluid are described, and the unsatisfactory features of the presently available techniques for collecting this fluid for analysis are emphasized. There is a relationship between the fluid in the testis and lymph from vessels in the spermatic cord and lymph may be important for the transport of hormones to the general circulation in some circumstances and to other organs close to the testis. The testicular blood vessels display certain unusual features, a very high susceptibility to the toxic effects of cadmium salts, a high level of alkaline phosphatase activity in all endothelial cells but only after puberty and a high level of gamma-glutamyl transpeptidase in the endothelial cells of the arterioles and the testicular artery. These same cells are the site for a specific transport system for leucine and phenylalanine, with kinetic characteristics similar to the system in brain. Flow of blood may limit hormone secretion by the aspermatogenic testis, but diffusion limitation may also be important under some circumstances. A fuller understanding of the ways in which substances move around in the testis, particularly how they cross the endothelial cell layer or penetrate into the tubules, will be important for a better appreciation of testicular function.  相似文献   

17.
Summary In the tortoise Testudo graeca, the lizards Lacerta dugesi and Lacerta pityusensis, and the snake Natrix natrix, the innervation of the testicular interstitial tissue was studied by light and electron microscopy, the acetylcholinesterase (ache) technique, the Falck-Hillarp method for the detection of catecholamines, and the application of 6-hydroxydopamine. The intertubular spaces of the reptilian testes studied contain adrenergic nerve fibers the amount and distribution of which varies considerably both in various species and in various stages of the reproduction cycle. Nerve fibers do not enter the seminiferous epithelium. Fluorescence microscopy of the lizard testis reveals catecholaminergic varicosities which are mainly arranged around blood vessels, but do not show obvious connexions to Leydig cells. Ache-positive fibers are equally distributed in lizard testes surrounding each seminiferous tubule. In Natrix natrix ache-positive fibers are irregularly spread among groups of tubules, without showing a definite relation to Leydig cells either. By electron microscopy bundles of unmyelinated axons and axon terminals can be more easily detected in the testes of immature animals than in adult. Terminals of nerve fibers containing small (400–500 Å in diameter) and large (800–1400 Å) dense-cored vesicles and sometimes small clear vesicles establish contacts with Leydig cells. Three types of contact are described. 1. Contacts par distance at a distance of about 2000 Å and basal lamina interposed; 2. membranous contacts having a 200 Å gap only between axolemma and Leydig cell plasmalemma; 3. invaginations of terminals into Leydig cell perikarya. The latter may exhibit surface specialisations, which strongly resemble postsynaptic membrane thickenings. Experiments using 6-hydroxydopamine underline the adrenergic character of testicular nerve fibers, which can be regarded as another example of non-cholinergic, ache-positive neurons. In the testis of the immature tortoise profiles of axons occur which probably represent purinergic, ache-positive neurons.Supported by a grant from the Deutsche Forschungsgemeinschaft (Un 34/1).I am much indebted to Mrs. R. Sprang for her skillfull technical assistance.  相似文献   

18.
The viviparous lizards of the Sceloporus genus exhibit both seasonal and continuous spermatogenesis. The viviparous lizard Sceloporus mucronatus from Tecocomulco, Hidalgo, México, exhibits seasonal spermatogenesis. This study demonstrates the relationship between changes in testis volume, spermatogenesis activity, and Leydig cells during the male reproductive cycle of S. mucronatus. A recrudescence period is evident, which starts in the winter when testicular volume is reduced and climaxes in February, when the greatest mitotic activity of spermatogonia occurs. The testicular volume and Leydig cell index increase gradually during the spring with primary spermatocytes being the most abundant cell type observed within the germinal epithelium. In the summer, the secondary spermatocytes and undifferentiated round spermatids are the most abundant germinal cells. The breeding season coincides with spermiogenesis and spermiation; testicular volume also increases significantly as does the Leydig cell index where these cells increase in both cytoplasmic and nuclear volume. During fall, testicular regression begins with a significant decrease in testicular volume and germinal epithelium height, although there are remnant spermatozoa left within the lumen of the seminiferous tubules. During this time, the Leydig cell index is also reduced, and there is a decrease in cellular and nuclear volumes within these interstitial cells. Finally, during quiescence in late fall, there is reduced testicular volume smaller than during regression, and only spermatogonia and Sertoli cells are present within the seminiferous tubules. Leydig cells exhibit a low index number, their cellular and nuclear volumes are reduced, and there is a depletion in lipid inclusion cytoplasmically.  相似文献   

19.
Although seminiferous tubule maturation in horses begins in the central area of the testis, this process is thought to occur randomly throughout the testis in most mammals. Studies in our laboratory revealed that the establishment of spermatogenesis may not be a synchronous event in the testicular parenchyma of pigs. The objectives of the present study were to evaluate the pattern of seminiferous cord/tubule maturation and the morphological and functional characteristics of testicular somatic cells during postnatal development in three regions of the pig testis: a) near the tunica albuginea (TA); b) in the transitional area between the seminiferous tubules and mediastinum (TR); and c) in the intermediate area (ID) between the TA and TR. Based on the diameter of seminiferous cords/tubules, nucleus size of Sertoli cells and fluid secretion, mainly at 90 and 120 d of age, seminiferous tubule maturation was more advanced in the ID and TR. The mitotic activity of Sertoli cells was higher (P < 0.05) in the TR than the ID and TA at 7 and 120 d. Except for the mitotic index of the Leydig cells, which was lower (P < 0.05) in the ID at 7, 30, and 180 d than in the TA and TR, other Leydig cell ebd points, e.g., individual cell size, nuclear volume, and cytoplasmic volume, were consistently higher (P < 0.05) in the ID, suggesting that steroidogenesis was more active in this region during the period investigated. Overall, we inferred that Leydig cells in the ID may play a pivotal role in postnatal testis development in pigs and this type of cell is likely related to asynchronous testicular parenchyma development, with the transitional area providing the primary zone for growth of seminiferous tubules.  相似文献   

20.
The specific binding of 125I-labelled [D-Ser(tBu)6,des-GlyNH2(10)] LHRH ethylamide (LHRH-A) to testicular intertubular cells fractionated on Percoll density gradients was investigated. The greatest binding per cell occurred in the density region which contained the largest proportion of Leydig cells (sp. gr. 1.0820-1.0585). Autoradiographs of the cells from this region confirmed that silver stains were predominantly located over the Leydig cell, significantly (P less than 0.01) more grains were observed over this cell type in the total binding fractions than in the non-specific binding fractions. However, 5.9% of cells other than Leydig cells (testicular macrophages and indeterminate connective tissue cells) from this region also displayed significant displaceable binding (P less than 0.01). The location of [125I]LHRH-A binding to cells in other density regions, which did not contain identifiable Leydig cells, could not be established by autoradiography. These results confirm that the Leydig cell possesses LHRH receptors, but also indicate that other testicular cells have specific, high-affinity binding sites for LHRH-A, and may either be responsive to direct stimulation by LHRH, or may partially mediate the effects of LHRH and its agonists on Leydig cell function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号