首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The functional cooperation of equine herpesvirus 1 (EHV-1) glycoprotein M (gM) and the gene 10 (UL49.5) product was analyzed. Transient-transfection experiments using gM and UL49.5 expression plasmids as well as RK13 cell lines constitutively expressing UL49.5 (RK49.5) or gM (RKgM) demonstrated that the endo-beta-N-acetylglucosaminidase H (endo H)-resistant mature form of gM was detectable only after coexpression of the two proteins. Deletion of the EHV-1 UL49.5-homologous gene 10 in strain KyA resulted in a small-plaque phenotype and up to 190-fold-reduced virus titers. The growth defects of the mutant KyA Delta 49.5 virus, which were very similar to those of a gM-negative KyA virus, could be completely compensated for by growth of the mutant virus on RK49.5 cells or by repairing the deletion of gene 10 in the revertant virus KyA Delta 49.5R. Analysis of cells infected with the UL49.5-negative EHV-1 demonstrated that gM was not transported to the trans-Golgi network in the absence of the UL49.5 product. In contrast, gM was efficiently transported and processed to the endo H-resistant mature form in KyA Delta 49.5-infected RK49.5 cells. Furthermore, radioimmunoprecipitation experiments demonstrated that gM maturation was observed only if a 10,000-M(r) protein was coprecipitated with gM in KyA- or KyA Delta 49.5R-infected cells or virions. This protein was absent in cells infected with Ky Delta 49.5 or KyA Delta gM, suggesting that it was the EHV-1 UL49.5 product. Taken together, our results demonstrate that the expression of the EHV-1 UL49.5 product is necessary and sufficient for gM processing and that it is required for efficient virus replication.  相似文献   

2.
Experiments to analyze the function of the equine herpesvirus 1 (EHV-1) glycoprotein gM homolog were conducted. To this end, an Rk13 cell line (TCgM) that stably expressed EHV-1 gM was constructed. Proteins with apparent M(r)s of 46,000 to 48,000 and 50,000 to 55,000 were detected in TCgM cells with specific anti-gM antibodies, and the gM protein pattern was indistinguishable from that in cells infected with EHV-1 strain RacL11. A viral mutant (L11deltagM) bearing an Escherichia coli lacZ gene inserted into the EHV-1 strain RacL11 gM gene (open reading frame 52) was purified, and cells infected with L11deltagM did not contain detectable gM. L11deltagM exhibited approximately 100-fold lower titers and a more than 2-fold reduction in plaque size relative to wild-type EHV-1 when grown and titrated on noncomplementing cells. Viral titers were reduced only 10-fold when L11deltagM was grown on the complementing cell line TCgM and titrated on noncomplementing cells. L11deltagM also exhibited slower penetration kinetics compared with those of the parental EHV-1 RacL11. It is concluded that EHV-1 gM plays important roles in the penetration of virus into the target cell and in spread of EHV-1 from cell to cell.  相似文献   

3.
By the aid of freezing and thawing, cell-free infectious virions were detected from an apparently nonproductive Vero cell line infected with Niigata-1 strain of subacute sclerosing panencephalitis virus. The production of infectious virions was limited in amount and such virions were detectable only during a limited period after cell subculture. The infectious virions were filtrable through a 0.65 mu membrane filter and neutralized completely by an antiserum against measles virus. The virions were banded at the density of 1.132, while Edmonston strain of measles virus banded at 1.164 in potassium tartrate density gradients. Infectious virions were also released from infected Vero cells by treatment of the cells in a hypotonic solution to an amount comparable to that obtained by freezing and thawing. Infection of normal culture of Vero cells with the infectious virions readily established a virus-cell interaction identical to that in the original infected culture from which the virions were recovered.  相似文献   

4.
The objective of this study was to determine whether the 10 wash cycles proposed by the International Embryo Transfer Society (IETS) for bovine embryos efficiently decontaminated equine embryos exposed to equine herpes virus 1 (EHV-1) in vitro. Donor mares and stallions were individually screened and shown to be negative for the virus by PCR detection of EHV-1 DNA in blood leukocytes, semen, and uterine lavages in which embryos were recovered. Twenty embryos were recovered and randomly assigned to one of two groups: 10 embryos were exposed for 24h to infectious EHV-1 at 10(6)TCID(50)/ml, and 10 embryos were used as negative controls. Exposed embryos were washed in accordance with IETS recommendations for ruminant and porcine embryos, before being incubated for 24 h with semiconfluent rabbit kidney (RK13) cells to detect any cytopathic effects (CPE), and finally tested for the presence of EHV-1 viral DNA by PCR. The embryo washing media were also assayed for the virus on RK 13 cells and by PCR. Control embryos were neither exposed to the virus nor washed. EHV-1 was not found in the control embryos, or in the last five washes of the exposed embryos. However, the virus was detected in 7/10 of the embryos exposed to EHV-1 for 24h, as well as in the first five washes of the embryos. The gradual disappearance of EHV-1 from the 10 successive wash solutions from the exposed embryos and the detection of viral DNA in 7/10 washed embryos by PCR, demonstrated that the washing procedure was unable to remove EHV-1 and suggested that EHV-1 could be attached to the acellular layer surrounding embryos (zona pellucida or capsule) or had penetrated the embryo.  相似文献   

5.
Experiments were conducted to analyze the equine herpesvirus 1 (EHV-1) gene 68 product which is encoded by the EHV-1 Us2 homolog. An antiserum directed against the amino-terminal 206 amino acids of the EHV-1 Us2 protein specifically detected a protein with an Mr of 34,000 in cells infected with EHV-1 strain RacL11. EHV-1 strain Ab4 encodes a 44,000-Mr Us2 protein, whereas vaccine strain RacH, a high-passage derivative of RacL11, encodes a 31,000-Mr Us2 polypeptide. Irrespective of its size, the Us2 protein was incorporated into virions. The EHV-1 Us2 protein localized to membrane and nuclear fractions of RacL11-infected cells and to the envelope fraction of purified virions. To monitor intracellular trafficking of the protein, the green fluorescent protein (GFP) was fused to the carboxy terminus of the EHV-1 Us2 protein or to a truncated Us2 protein lacking a stretch of 16 hydrophobic amino acids at the extreme amino terminus. Both fusion proteins were detected at the plasma membrane and accumulated in the vicinity of nuclei of transfected cells. However, trafficking of either GFP fusion protein through the secretory pathway could not be demonstrated, and the EHV-1 Us2 protein lacked detectable N- and O-linked carbohydrates. Consistent with the presence of the Us2 protein in the viral envelope and plasma membrane of infected cells, a Us2-negative RacL11 mutant (L11DeltaUs2) exhibited delayed penetration kinetics and produced smaller plaques compared with either wild-type RacL11 or a Us2-repaired virus. After infection of BALB/c mice with L11DeltaUs2, reduced pathogenicity compared with the parental RacL11 virus and the repaired virus was observed. It is concluded that the EHV-1 Us2 protein modulates virus entry and cell-to-cell spread and appears to support sustained EHV-1 replication in vivo.  相似文献   

6.
Seo JY  Britt WJ 《Journal of virology》2008,82(13):6272-6287
Human cytomegalovirus (HCMV) UL99-encoded pp28 is an essential tegument protein required for envelopment and production of infectious virus. Nonenveloped virions accumulate in the cytoplasm of cells infected with recombinant viruses with the UL99 gene deleted. Previous results have suggested that a key function of pp28 in the envelopment of infectious HCMV is expressed after the protein localizes in the assembly compartment (AC). In this study, we investigated the potential role of pp28 multimerization in the envelopment of the infectious virion. Our results indicated that pp28 multimerized during viral infection and that interacting domains responsible for self-interaction were localized in the amino terminus of the protein (amino acids [aa] 1 to 43). The results from transient-expression and/or infection assays indicated that the self-interaction took place in the AC. A mutant pp28 molecule containing only the first 35 aa failed to accumulate in the AC, did not interact with pp28 in the AC, and could not support virus replication. In contrast, the first 50 aa of pp28 was sufficient for the self-interaction within the AC and the assembly of infectious virus. Recombinant viruses encoding an in-frame deletion of aa 26 to 33 of pp28 were replication competent, whereas infectious virus was not recovered from HCMV BACs lacking aa 26 to 43. These findings suggested that the accumulation of pp28 was a prerequisite for multimerization of pp28 within the AC and that pp28 multimerization in the AC represented an essential step in the envelopment and production of infectious virions.  相似文献   

7.
8.
Studies with herpes simplex virus type 1 (HSV-1) have shown that secondary envelopment and virus release are blocked in mutants deleted for the tegument protein gene UL36 or UL37, leading to the accumulation of DNA-containing capsids in the cytoplasm of infected cells. The failure to assemble infectious virions has meant that the roles of these genes in the initial stages of infection could not be investigated. To circumvent this, cells infected at a low multiplicity were fused to form syncytia, thereby allowing capsids released from infected nuclei access to uninfected nuclei without having to cross a plasma membrane. Visualization of virus DNA replication showed that a UL37-minus mutant was capable of transmitting infection to all the nuclei within a syncytium as efficiently as the wild-type HSV-1 strain 17+ did, whereas infection by UL36-minus mutants failed to spread. Thus, these inner tegument proteins have differing functions, with pUL36 being essential during both the assembly and uptake stages of infection, while pUL37 is needed for the formation of virions but is not required during the initial stages of infection. Analysis of noninfectious enveloped particles (L-particles) further showed that pUL36 and pUL37 are dependent on each other for incorporation into tegument.  相似文献   

9.
The tegument is an integral and essential structural component of the herpes simplex virus type 1 (HSV-1) virion. The UL37 open reading frame of HSV-1 encodes a 120-kDa virion polypeptide which is a resident of the tegument. To analyze the function of the UL37-encoded polypeptide a null mutation was generated in the gene encoding this protein. In order to propagate this mutant virus, transformed cell lines that express the UL37 gene product in trans were produced. The null mutation was transferred into the virus genome using these complementing cell lines. A mutant virus designated KDeltaUL37 was isolated based on its ability to form plaques on the complementing cell line but not on nonpermissive (noncomplementing) Vero cells. This virus was unable to grow in Vero cells; therefore, UL37 encodes an essential function of the virus. The mutant virus KDeltaUL37 produced capsids containing DNA as judged by sedimentation analysis of extracts derived from infected Vero cells. Therefore, the UL37 gene product is not required for DNA cleavage or packaging. The UL37 mutant capsids were tagged with the smallest capsid protein, VP26, fused to green fluorescent protein. This fusion protein decorates the capsid shell and consequently the location of the capsid and the virus particle can be visualized in living cells. Late in infection, KDeltaUL37 capsids were observed to accumulate at the periphery of the nucleus as judged by the concentration of fluorescence around this organelle. Fluorescence was also observed in the cytoplasm in large puncta. Fluorescence at the plasma membrane, which indicated maturation and egress of virions, was observed in wild-type-infected cells but was absent in KDeltaUL37-infected cells. Ultrastructural analysis of thin sections of infected cells revealed clusters of DNA-containing capsids in the proximity of the inner nuclear membrane. Occasionally enveloped capsids were observed between the inner and outer nuclear membranes. Clusters of unenveloped capsids were also observed in the cytoplasm of KDeltaUL37-infected cells. Enveloped virions, which were observed in the cytoplasm of wild-type-infected cells, were never detected in the cytoplasm of KDeltaUL37-infected cells. Crude cell fractionation of infected cells using detergent lysis demonstrated that two-thirds of the UL37 mutant particles were associated with the nuclear fraction, unlike wild-type particles, which were predominantly in the cytoplasmic fraction. These data suggest that in the absence of UL37, the exit of capsids from the nucleus is slowed. UL37 mutant particles can participate in the initial envelopment at the nuclear membrane, although this process may be impaired in the absence of UL37. Furthermore, the naked capsids deposited in the cytoplasm are unable to progress further in the morphogenesis pathway, which suggests that UL37 is also required for egress and reenvelopment. Therefore, the UL37 gene product plays a key role in the early stages of the maturation pathway that give rise to an infectious virion.  相似文献   

10.
An electrophoretic analysis of radioactively labeled, purified, "empty" and DNA-containing infectious bovine rhinotracheitis virions revealed the presence of 25 to 33 structural (virion) polypeptides. A total of 11 of these polypeptides could be labeled with [3H]glucosamine and were identified as glycoproteins. In addition to the 25 structural polypeptides, infectious bovine rhinotracheitis virus infected cells also contained at least 15 nonstructural (nonvirion) polypeptides that were not present in purified virions. Expression of the viral polypeptides in infected cells was controlled temporally. Thus, most viral polypeptides could be categorized as "alpha" (immediate early), "beta" (early), or "gamma" (late) on the basis of their order of appearance in infected cells and whether their syntheses were dependent upon prior viral protein or DNA synthesis. None of the glycoproteins belongs to the alpha class, although at least one (GVP11) was synthesized in the absence of viral DNA synthesis. Serum from a cow in which infectious bovine rhinotracheitis virus lesions were reactivated by dexamethasone precipitated both structural and nonstructural polypeptides.  相似文献   

11.
Glycoprotein IV (gIV) of bovine herpesvirus 1 (BHV-1), a homolog of herpes simplex virus glycoprotein D, represents a major component of the viral envelope and a dominant immunogen. To analyze the functional role of gIV during BHV-1 replication, cell line BUIV3-7, which constitutively expresses gIV, was constructed and used for the isolation of gIV- BHV-1 mutant 80-221, in which the gIV gene was replaced by a lacZ expression cassette. On complementing gIV-expressing cells, the gIV- BHV-1 replicated normally but was unable to form plaques and infectious progeny on noncomplementing cells. Further analysis showed that gIV is essential for BHV-1 entry into target cells, whereas viral gene expression, DNA replication, and envelopment appear unchanged in both noncomplementing and complementing cells infected with phenotypically complemented gIV- BHV-1. The block in entry could be overcome by polyethylene glycol-induced membrane fusion. After passaging of gIV- BHV-1 on complementing cells, a rescued variant, BHV-1res, was isolated and shown to underexpress gIV in comparison with its wild-type parent. Comparison of the penetration kinetics of BHV-1 wild type, phenotypically complemented gIV- BHV-1, and BHV-1res indicated that penetration efficiency correlated with the amount of gIV present in virus particles. In conclusion, we show that gIV of BHV-1 is an essential component of the virion involved in virus entry and that the amount of gIV in the viral envelope modulates the penetration efficiency of the virus.  相似文献   

12.
The cytolytic animal virus equine herpesvirus type 1 (EHV-1) was evaluated for its oncolytic potential against five human glioblastoma cell lines. EHV-1 productively infected four of these cell lines, and the degree of infection was positively correlated with glioma cell death. No human major histocompatibility complex class 1 (MHC-I) was detected in the resistant glioma line, while infection of the susceptible glioma cell lines, which expressed human MHC-I, were blocked with antibody to MHC-I, indicating that human MHC-I acts as an EHV-1 entry receptor on glioma cells.  相似文献   

13.
HEp-2 cells or Vero cells infected with herpes simplex virus type 1 were exposed to the ionophore monensin, which is thought to block the transit of membrane vesicles from the Golgi apparatus to the cell surface. We found that yields of extracellular virus were reduced to less than 0.5% of control values by 0.2 microM monensin under conditions that permitted accumulation of cell-associated infectious virus at about 20% of control values. Viral protein synthesis was not inhibited by monensin, whereas late stages in the post-translational processing of the viral glycoproteins were blocked. The transport of viral glycoproteins to the cell surface was also blocked by monensin. Although the assembly of nucleocapsids appeared to be somewhat inhibited in monensin-treated cells, electron microscopy revealed that nucleocapsids were enveloped to yield virions, and electrophoretic analyses showed that the isolated virions contained immature forms of the envelope glycoproteins. Most of the virions which were assembled in monensin-treated cells accumulated in large intracytoplasmic vacuoles, whereas most of the virions produced by and associated with untreated cells were found attached to the cell surface. Our results implicate the Golgi apparatus in the egress of herpes simplex virus from infected cells and also suggest that complete processing of the viral envelope glycoproteins is not essential for nucleocapsid envelopment or for virion infectivity.  相似文献   

14.
Morphogenesis of human cytomegalovirus (HCMV) is still only partially understood. We have characterized the role of HCMV tegument protein pUL71 in viral replication and morphogenesis. By using a rabbit antibody raised against the C terminus of pUL71, we could detect the protein in infected cells, as well as in virions showing a molecular mass of approximately 48 kDa. The expression of pUL71, detected as early as 48 h postinfection, was not blocked by the antiviral drug foscarnet, indicating an early expression. The role of pUL71 during virus replication was investigated by construction and analysis of a UL71 stop mutant (TBstop71). The mutant could be reconstituted on noncomplementing cells proving that pUL71 is nonessential for virus replication in human fibroblasts. However, the inhibition of pUL71 expression resulted in a severe growth defect, as reflected by an up to 16-fold reduced extracellular virus yield after a high-multiplicity infection and a small-plaque phenotype. Ultrastructural analysis of cells infected with TBstop71 virus revealed an increased number of nonenveloped nucleocapsids in the cytoplasm, many of them at different stages of envelopment, indicating that final envelopment of nucleocapsids in the cytoplasm was affected. In addition, enlarged multivesicular bodies (MVBs) were found in close proximity to the viral assembly compartment, suggesting that pUL71 affects MVBs during virus infection. The observation of numerous TBstop71 virus particles attached to MVB membranes and budding processes into MVBs indicated that these membranes can be used for final envelopment of HCMV.  相似文献   

15.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

16.
Latency of Human Measles Virus in Hamster Cells   总被引:14,自引:9,他引:5  
A latent system employing measles virus (Schwarz strain) was developed in hamster embryo fibroblasts (HEF). Measles virus-specific antigen was detected by immunofluorescence in 30 to 50% of HEF cells, and these cells released infectious virus when co-cultivated with a susceptible monkey cell line, BSC-1 cells. No infectious virus could be detected in the cells when measures were taken to exclude passage of viable latent cells onto the indicator BSC-1 cells. Infectious center assays demonstrated that about 1 in 10 of the latently infected cells in the population could release infectious virus. Infectious virus appeared within 6 hr after co-cultivation of the HEF cells with BSC-1 cells, as compared to 24 hr required for normal replication of measles virus in the BSC-1 cells. Furthermore, labeling of progeny virus ribonucleic acid (RNA) by using tritiated uridine, and inhibition of RNA or protein synthesis by 5-azacytidine or cycloheximide suggested that neither additional RNA nor protein synthesis is required after co-cultivation of the cells to effect early virus release. It can therefore be postulated that there is a block at a late step in virus replication in the latently infected hamster cells. The most obvious site would concern maturation of infectious virions at the cell membrane.  相似文献   

17.
The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac109 core gene has been previously characterized as an essential late gene. Our results showed that budded virions could be detected in supernatants of infected Sf-9 cells, even when ac109 knockout viruses displayed a single-cell infection phenotype. Moreover, confocal microscopy analysis revealed that budded virions can enter the cytoplasm but are unable to enter the cell nucleus. This defect could be repaired by complementing ac109 in trans. In addition, polyhedra of normal size could be detected in Sf-9 nuclei infected with ac109 knockout viruses. However, electron microscopy demonstrated that these occlusion bodies were empty. Altogether, these results indicate that ac109 is required for infectivity of both phenotypes of virus.  相似文献   

18.
Morphogenesis of Sindbis virus in cultured Aedes albopictus cells.   总被引:11,自引:11,他引:0       下载免费PDF全文
Cultured mosquito cells were found to produce Sindbis virus nearly as efficiently as BHK-21 cells at 28 C. In virtually all of the cells observed in the electron microscope, virus morphogenesis was found to occur within complex vesicular structures which developed after viral infection. Viral nucleocapsids were first seen in these vesicles and appeared to be enveloped within these structures. The process of envelopment within these inclusions differed in some respects from the process previously described for the envelopment of nucleocapsids at the plasma membrane of vertebrae cells. Free nucleocapsids were only rarely seen in the cytoplasm of infected mosquito cells, and budding of virus from the cell surface was detected so infrequently that this process of virus production could not account for the amount of virus produced by the infected cells. The vast majority of extracellular virus was produced by the fusion of the virus-containing vesicles with the plasma membrane releasing mature virions and membrane nucleocapsid complexes in various stages of development.  相似文献   

19.
Equine herpesvirus type 1 (EHV-1), a member of the Alphaherpesviridae, displays a broad host range in vitro, allowing for detailed study of the mechanisms of productive infection, including attachment and entry, in various cell culture systems. Previously, we showed that EHV-1 infects Chinese hamster ovary (CHO-K1) cells even though these cells do not express a known alphaherpesvirus entry receptor. In this report, we show by electron microscopy and an infectious recovery assay that entry into CHO-K1 cells occurs via an endocytic or phagocytic mechanism, while entry into equine dermal (ED) or rabbit kidney (RK13) cells occurs by direct fusion at the cell surface. In both cases (endocytic/phagocytic or direct fusion), entry leads to productive infection. Using drugs that inhibit clathrin-dependent or caveola-dependent endocytosis, we showed that EHV-1 entry into CHO-K1 cells does not require clathrin or caveolae. We also show that EHV-1 infection requires the activation of cell signaling molecules. In particular, we demonstrate that activation of the serine/threonine Rho kinase ROCK1 is critical for infection. Inhibition of this kinase by drugs or overexpression of a negative regulator of ROCK1 significantly blocked EHV-1 infection. These results show that EHV-1 can enter disparate cell types by at least two distinct mechanisms and that productive infection is dependent upon the activation of ROCK1.  相似文献   

20.
A subclone of Huh-7 cells that could be relatively efficiently transfected and infected with hepatitis E virus was identified. Following transfection, infectious virus was produced but remained predominantly cell associated. Intracellular virus, recovered by lysis of transfected cells, infected na?ve cells. This in vitro-produced virus appeared to be antigenically identical to virus isolated from clinical samples. Lysates from cells transfected with mutant viral genomes unable to synthesize ORF3 protein contained infectious virions that were similar in number, thermostability, and sedimentation characteristics to those in lysates transfected with wild-type viral genomes. Therefore, in contrast to its requirement in vivo, ORF3 protein is not required for infection of Huh-7 cells or production of infectious virus in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号