首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inositol 1,3,4,5-tetrakisphosphate (IP4), is a ubiquitous inositol phosphate that has been suggested to function as a second messenger. Recently, we purified and cloned a putative IP4 receptor, termed GAP1IP4BP[1], which is also a member of the GAP1 family of GTPase-activating proteins for the Ras family of GTPases. A homologue of GAP1IP4BP, called GAP1m, has been identified [2] and here we describe the cloning of a GAP1m cDNA from a human circulating-blood cDNA library. We found that a deletion mutant of GAP1m, in which the putative phospholipid-binding domains (C2A and C2B) have been removed, binds to IP4 with a similar affinity and specificity to that of the corresponding GAP1IP4BP mutant. Expression studies of the proteins in either COS-7 or HeLa cells showed that, whereas GAP1IP4BP is located solely at the plasma membrane, GAP1m seems to have a distinct perinuclear localisation. By mutational analysis, we have shown that the contrast in subcellular distribution of these two closely related proteins may be a function of their respective pleckstrin homology (PH) domains. This difference in localisation has fundamental significance for our understanding of the second messenger functions of IP4.  相似文献   

2.
Loss of function of the Schizosaccharomyces pombe gap1 gene results in the same phenotypes as those caused by an activated ras1 mutation, i.e., hypersensitivity to the mating factor and inability to perform efficient mating. Sequence analysis of gap1 indicates that it encodes a homolog of the mammalian Ras GTPase-activating protein (GAP). The predicted gap1 gene product has 766 amino acids with relatively short N- and C-terminal regions flanking the conserved core sequence of GAP. Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP. Thus, Gap1 and Ste6, a putative GDP-GTP-exchanging protein for Ras1 previously identified, appear to play antagonistic roles in the Ras-GTPase cycle in S. pombe. Furthermore, we suggest that this Ras-GTPase cycle involves the ra12 gene product, another positive regulator of Ras1 whose homologs have not been identified in other organisms, which could function either as a second GDP-GTP-exchanging protein or as a factor that negatively regulates Gap1 activity.  相似文献   

3.
GAP1IP4BP is a member of the GAP1 family of Ras GTPase-activating proteins (GAPs) that includes GAP1m, CAPRI, and RASAL. Composed of a central Ras GAP-related domain (RasGRD), surrounded by amino-terminal C2 domains and a carboxy-terminal PH/Btk domain, these proteins, with the notable exception of GAP1m, possess an unexpected arginine finger-dependent GAP activity on the Ras-related protein Rap1 (S. Kupzig, D. Deaconescu, D. Bouyoucef, S. A. Walker, Q. Liu, C. L. Polte, O. Daumke, T. Ishizaki, P. J. Lockyer, A. Wittinghofer, and P. J. Cullen, J. Biol. Chem. 281:9891-9900, 2006). Here, we have examined the mechanism through which GAP1IP4BP can function as a Rap1 GAP. We show that deletion of domains on either side of the RasGRD, while not affecting Ras GAP activity, do dramatically perturb Rap1 GAP activity. By utilizing GAP1IP4BP/GAP1m chimeras, we establish that although the C2 and PH/Btk domains are required to stabilize the RasGRD, it is this domain which contains the catalytic machinery required for Rap1 GAP activity. Finally, a key residue in Rap1-specific GAPs is a catalytic asparagine, the so-called asparagine thumb. By generating a molecular model describing the predicted Rap1-binding site in the RasGRD of GAP1IP4BP, we show that mutagenesis of individual asparagine or glutamine residues that lie in close proximity to the predicted binding site has no detectable effect on the in vivo Rap1 GAP activity of GAP1IP4BP. In contrast, we present evidence consistent with a model in which the RasGRD of GAP1IP4BP functions to stabilize the switch II region of Rap1, allowing stabilization of the transition state during GTP hydrolysis initiated by the arginine finger.The Ras-like family of small GTPases are ubiquitously expressed, evolutionarily conserved proteins that, by undergoing conformational changes in response to the alternate binding of GDP and GTP, function as binary switches (28, 31, 35). The GDP-bound “off” state and the GTP-bound “on” state recognize distinct effector proteins, thereby allowing the regulation of a variety of downstream signaling events (28, 31, 35). While Ras is the best-known and best-studied Ras-like GTPase, Rap1 has recently attracted considerable attention (reviewed in reference 20).Rap1 was originally identified through its ability, when overexpressed, to reverse the phenotype of K-Ras-transformed NIH 3T3 cells (19). As Ras and Rap1 have very similar effector regions, the ability of Rap1 to reverse the transformed phenotype appeared to arise through an ability to compete with K-Ras effectors. For example, Rap1 binds the Ras effector Raf1 but this does not lead to its activation (11). This is consistent with a simple model in which Rap1 functions as a Ras antagonist (6, 37). However, recent work has challenged this view. Increasing evidence points to Rap1 interacting with its own panel of effectors through which it controls cell-cell adhesion and cell-matrix interactions (reviewed in reference 20).Like that of other GTPases, the activation of Ras and Rap1 is regulated through guanine nucleotide exchange factors, which control activation by stimulating the exchange of GDP for GTP. Inactivation is driven by GTPase-activating proteins (GAPs). These enhance the intrinsic GTPase activity of Ras and Rap1, thereby leading to GTP hydrolysis. A wide variety of guanine nucleotide exchange factors and GAPs specific for these GTPases have been identified (14). Through the arrangement of different modular domains, these proteins are regulated following the activation of cell surface receptors. This occurs either through direct association with the activated receptor or indirectly through second messengers (4, 5, 14, 41).Mammalian proteins capable of functioning as Ras GAPs include NF1 (3, 27, 40), p120GAP (38), the semaphorin 4D receptor plexin-B1 (29), and members of the GAP1 (reviewed in reference 41) and SynGAP (DAB2IP, nGAP, and SynGAP) families (10, 18, 39). These function as Ras GAPs by supplying a catalytic arginine residue—the arginine finger—into the active site of Ras. This stabilizes the transition state of the GTPase reaction, increasing the reaction rate by more than 1,000-fold (1, 33, 34).Rap1 GAPs include Rap GAPs I and II, the SPA-1 family (SPA-1, SPAR, SPAL, and E6TP1), and tuberin (16, 17, 26, 32). Unlike Ras, Rap1 does not possess the catalytic glutamine residue that is critical for GTP hydrolysis in Ras. This fundamental difference means that the mechanisms by which Ras and Rap1 GAPs function are distinct. Rap1 GAPs do not employ a catalytic arginine residue (8, 9); instead, they provide a catalytic asparagine—the asparagine thumb—to stimulate GTP hydrolysis (15). Here the asparagine carboxamide side chain has a function similar to that of the glutamine residue in Ras, stabilizing the position of the nucleophilic water and γ-phosphate in the transition complex (15, 36).Given such distinct catalytic mechanisms, surprisingly, some Ras GAPs, while having no detectable sequence homology with any Rap1 GAPs, are capable of stimulating the GTPase activity of Rap1. The first protein found to display such dual activities was GAP1IP4BP (13) (also known as RASA3, GAPIII, and R-Ras GAP). This is a member of the GAP1 family, which also comprises GAP1m, CAPRI, and RASAL (2, 23-25). These proteins are characterized by a domain architecture comprising amino-terminal tandem C2 domains, a highly conserved central Ras GAP-related domain (RasGRD), and a carboxy-terminal pleckstrin homology (PH) domain that is associated with a Bruton''s tyrosine kinase (Btk) motif (41). Consistent with the presence of the RasGRD, all proteins display Ras GAP activity, although each is differentially regulated following receptor stimulation (41). With the notable exception of GAP1m, all GAP1 proteins also possess efficient Rap1 GAP activity (22). Such dual specificity is not restricted solely to GAP1 proteins. Recently, C2 domain-containing SynGAP—a neuronal Ras GAP—has also been shown to display Rap1 GAP activity (21), an activity that appears to require, alongside the RasGRD, the presence of a single C2 domain (30).Here we have examined the mechanism behind the dual Ras and Rap1 GAP activities of GAP1IP4BP. Through the generation of a series of GAP1IP4BP/GAP1m chimeras, we have established that while the C2 domains of GAP1IP4BP are required to stabilize the RasGRD, these domains do not supply catalytic residues required for Rap1 GAP activity. Rather, the Rap1 GAP catalytic machinery appears to reside solely within the RasGRD. By the site-directed mutagenesis of selected asparagine and glutamine residues within this domain—selected following the generation of a predicted molecular model of the GAP1IP4BP RasGRD-Ras(Rap1) complex—we establish that the ability of GAP1IP4BP to function as a Rap1 GAP does not occur via a mechanism that utilizes a classic asparagine thumb. Rather, we suggest that the GAP1IP4BP RasGRD functions to stabilize the switch II region of Rap1 in a manner that allows a catalytic arginine finger from GAP1IP4BP to drive the hydrolysis of GTP.  相似文献   

4.
We have previously purified a novel GTPase-activating protein (GAP) for Ras which is immunologically distinct from the known Ras GAPs, p120GAP and neurofibromin (M. Maekawa, S. Nakamura, and S. Hattori, J. Biol. Chem. 268:22948-22952, 1993). On the basis of the partial amino acid sequence, we have obtained a cDNA which encodes the novel Ras GAP. The predicted protein consists of 847 amino acids whose calculated molecular mass, 96,369 Da, is close to the apparent molecular mass of the novel Ras GAP, 100 kDa. The amino acid sequence shows a high degree of similarity to the entire sequence of the Drosophila melanogaster Gap1 gene. When the catalytic domain of the novel GAP was compared with that of Drosophila Gap1, p120GAP, and neurofibromin, the highest degree of similarity was again observed with Gap1. Thus, we designated this gene Gap1m, a mammalian counterpart of the Drosophila Gap1 gene. Expression of Gap1m was relatively high in brain, placenta, and kidney tissues, and it was expressed at low levels in other tissues. A recombinant protein consisting of glutathione-S-transferase and the GAP-related domain of Gap1m stimulated GTPase of normal Ras but not that of Ras having valine at the 12th residue. Expression of the same region in Saccharomyces cerevisiae suppressed the ira2- phenotype. In addition to the GAP catalytic domain, Gap1m has two domains with sequence closely related to those of the phospholipid-binding domain of synaptotagmin and a region with similarity to the unique domain of Btk tyrosine kinase. These results clearly show that Gap1m is a novel Ras GAP molecule of mammalian cells.  相似文献   

5.
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors.  相似文献   

6.
During a large-scale screen of a human fetal brain cDNA library, a novel human gene GNB2L1 encoding a novel RACK (receptor of activated protein kinase C) protein was isolated and sequenced. The cDNA is 1142 bp long and has a predicted open reading frame encoding 316 aa. The predicted protein shows higher similarity to rat RACK1 and many RACK proteins of different organisms including Drosophila, C. elegans, mouse, rat, human, C. fasciculata, zebrafish, A. thaliana, S. cerevisiae and so on, suggesting it is conserved during evolution. The gene was mapped to human chromosome 5q35.3, the telomer position of chromosome 5q, in which the disease gene for early-onset primary congenital lymphedema was mapped. Also, 5q35.3 is a frequently reported location for cytogenetic and molecular abnormalities in renal cell carcinomas. The gene has 8 exons and 7 introns. It is expressed ubiquitously in many human tissues detected by northern blot analysis and RT-PCR.  相似文献   

7.
GTPase-activating protein (GAP) is a key regulator of the cellular Ras protein, which is implicated in oncogenic signal transduction pathways downstream of the viral Src (v-Src) kinase. Previous studies demonstrated that v-Src induces tyrosine phosphorylation of GAP, suggesting that GAP may provide a biochemical link between v-Src and Ras signaling pathways. To determine the precise residues in GAP phosphorylated by Src kinases, we used a baculovirus/insect cell expression system for investigating in vitro phosphorylation of GAP. Phosphopeptide mapping analysis revealed that v-Src and normal cellular Src (c-Src) phosphorylate tyrosine residues in bovine GAP at one major site and one minor site in vitro. Significantly, the major site of GAP phosphorylation in vitro is also the major site of in vivo tyrosine phosphorylation of GAP in rat fibroblasts transformed by v-Src. Analyses of GAP deletion mutants and TrpE-GAP fusion proteins established that Tyr-457 of bovine GAP (and the corresponding residue of rat and human GAP) is the major site of tyrosine phosphorylation. Our results demonstrate that the v-Src kinase induces phosphorylation of the same tyrosine residue of GAP in vitro and in vivo, suggesting that GAP is a direct substrate of activated Src kinases in vivo. Because epidermal growth factor receptor phosphorylates the equivalent tyrosine residue in human GAP (Tyr-460), these findings are consistent with the hypothesis that specific phosphorylation of GAP at this site may have a physiologically important role in regulating mitogenic Ras signaling pathways.  相似文献   

8.
The residues of Ras and Rap proteins that determine their GAP specificities.   总被引:15,自引:0,他引:15  
The oncogenic transformation of a normal fibroblast by mutated Ras genes can be reversed by overexpression of a Ras-related gene called Rap1A (or Krev1). Both Ras and Rap1A proteins are G proteins and appear to serve as signal transducers only in the GTP-bound form. Therefore, GAP1 and GAP3, which stimulate the intrinsic GTPase activities of normal Ras and Rap1A proteins, respectively, serve as attenuators of their signal transducing activities. In this paper, we describe the enzymatic properties of several mutated Rap1A and chimeric Ras/Rap1A (or -1B) proteins which lead to the following conclusions: (i) the GAP3-dependent activation of both Rap1A and -1B GTPases requires Gly12, but neither Thr61 nor Gln63; (ii) residues 64 to 70 of the Rap1 GTPases are sufficient to determine their specificities for GAP3; and (iii) residues 61 to 65 of the Ras GTPases are sufficient for determining their specificities for GAP1. Thus, the domains of the Ras or Rap1 proteins that determine whether their signals are attenuated by GAP1 or GAP3 are distinct from the N-terminal domain (residues 21 to 54) that determines whether their signals are oncogenic or antioncogenic. The Arg12 mutant of chimeric HaRas(1-54)/Rap1A(55-184) protein has been previously reported to be oncogenic (Zhang, K., Noda, M., Vass, W. C., Papageorge, A.G., and Lowy, D.R. (1990) Science 249, 162-165). In this paper, we show that the Val12 mutant of chimeric HaRas(1-54)/Rap1B(55-184) protein is also oncogenic, suggesting that the C-terminal geranylgeranylation of the Rap 1B protein can replace functionally the C-terminal farnesylation of the Ras protein to allow the G protein to be oncogenic.  相似文献   

9.
Chow A  Gawler D 《FEBS letters》1999,460(1):166-172
Annexin VI is a Ca(2+)-dependent membrane and phospholipid binding protein. It mediates a protein-protein interaction with the Ras p21 regulatory protein p120GAP. In this study we have mapped the binding site of GAP within the annexin VI protein. Using Far Western overlay binding assays and cell lysate competition studies we have mapped the site of interaction to the inter-lobe linker region; amino acids 325-363. Finally, using a GST fusion protein corresponding to this linker region we have demonstrated that cellular loading of the fusion protein into Rat-1 fibroblasts by electroporation blocks the interaction and co-immunoprecipitation of annexin VI and GAP.  相似文献   

10.
Zhang C  Yu Y  Zhang S  Liu M  Xing G  Wei H  Bi J  Liu X  Zhou G  Dong C  Hu Z  Zhang Y  Luo L  Wu C  Zhao S  He F 《Genomics》2000,63(3):400-408
We have identified and characterized a novel human ADP-ribosylation factor GTPase-activating protein (ARFGAP1) gene that is related to other members of the ARF GAP family. The full-length cDNA for human ARFGAP1 was cloned following the identification of an EST obtained by large-scale cDNA library sequencing through a Blast search of public databases. Structurally, ARFGAP1 encodes a polypeptide of 516 amino acids, which contained a typical GATA-1-type zinc finger motif (CXXCX(16)CXXC) with the four cysteine residues that are highly conserved among other members of the ARF GAP family. The conserved ARF GAP domain may emphasize the biological importance of this gene. The ARFGAP1 gene, which contained 16 exons ranging from 0.5 to 9.3 kb, was mapped to human chromosome 22q13.2-q13.3 using radiation hybridization and in silico analyses. ARFGAP1 is strongly expressed in endocrine glands and testis. Interestingly, the expression of ARFGAP1 in testis is about sixfold higher than that in ovary, indicating a possible role of ARFGAP1 in the physiological function of sperm. Expression of ARFGAP1 in four human fetal tissues and seven cancer cell lines was also detected.  相似文献   

11.
GAP1(IP4BP) is a member of the GAP1 family of Ras GTPase-activating proteins (Ras GAPs) that includes GAP1(m), CAPRI, and RASAL. Composed of a central Ras GAP domain, surrounded by amino-terminal C(2) domains and a carboxyl-terminal pleckstrin homology/Bruton's tyrosine kinase domain, GAP1(IP4BP) has previously been shown to possess an unexpected GAP activity on the Ras-related protein Rap, besides the predicted Ras GAP activity (Cullen, P. J., Hsuan, J. J., Truong, O., Letcher, A. J., Jackson, T. R., Dawson, A. P., and Irvine, R. F. (1995) Nature 376, 527-530). Here we have shown that GAP1(IP4BP) is indeed an efficient Ras/Rap GAP, having K(m)s of 213 and 42 microm and estimated k(cat)s of 48 and 16 s(-1) for Ras and Rap, respectively. For this dual activity, regions outside the Ras GAP domain are required, as the isolated domain (residues 291-569) retains a pronounced Ras GAP activity yet has very low activity toward Rap. Interestingly, mutagenesis of the Ras GAP arginine finger, and surrounding residues important in Ras binding, inhibit both Ras and Rap GAP activity of GAP1(IP4BP). Although the precise details by which GAP1(IP4BP) can function as a Rap GAP remain to be determined, these data are consistent with Rap associating with GAP1(IP4BP) through the Ras-binding site within the Ras GAP domain. Finally, we have established that such dual Ras/Rap GAP activity is not restricted to GAP1(IP4BP). Although GAP1(m) appears to constitute a specific Ras GAP, CAPRI and RASAL display dual activity. For CAPRI, its Rap GAP activity is modulated upon its Ca(2+)-induced association with the plasma membrane.  相似文献   

12.
GAP1(IP4BP) and GAP1(m) belong to the GAP1 family of Ras GTPase-activating proteins that are candidate InsP4 receptors. Here we show they are ubiquitously expressed in human tissues and are likely to have tissue-specific splice variants. Analysis by subcellular fractionation of RBL-2H3 rat basophilic leukemia cells confirms that endogenous GAP1(IP4BP) is primarily localised to the plasma membrane, whereas GAP1(m) appears localised to the cytoplasm (cytosol and internal membranes) but not the plasma membrane. Subcellular fractionation did not indicate a specific co-localisation between membrane-bound GAP1(m) and several Ca2+ store markers, consistent with the lack of co-localisation between GAP1(m) and SERCA1 upon co-expression in COS-7 cells. This difference suggests that GAP1(m) does not reside at a site where it could regulate the ability of InsP4 to release intracellular Ca2+. As GAP1(m) is primarily localised to the cytosol of unstimulated cells it may be spatially regulated in order to interact with Ras at the plasma membrane.  相似文献   

13.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

14.
Ras interaction with the GTPase-activating protein (GAP)   总被引:18,自引:0,他引:18  
Biologically active forms of Ras complexed to GTP can bind to the GTPase-activating protein (GAP), which has been implicated as possible target of Ras in mammalian cells. In order to study the structural features of Ras required for this interaction, we have evaluated a series of mutant ras proteins for the ability to bind GAP and a series of Ras peptides for the ability to interfere with this interaction. Point mutations in the putative effector region of Ras (residues 32-40) that inhibit biological activity also impair Ras binding to GAP. An apparent exception is the Thr to Ser substitution at residue 35; [Ser-35]Ras binds to GAP as effectively as wild-type Ras even though this mutant is biologically weak in both mammalian and S. cerevisiae cells. In vitro, [Ser-35]Ras can also efficiently stimulate the S. cerevisiae target of Ras, adenylyl cyclase, indicating that other factors may influence Ras/protein interactions in vivo. Peptides having Ras residues 17-44 and 17-32 competed with the binding of Ras to E. coli-expressed GAP with IC50 values of 2.4 and 0.9 microM, respectively, whereas Ras peptide 17-26 was without effect up to 400 microM. A related peptide from the yeast GTP-binding protein YPT1 analogous to Ras peptide 17-32 competed with an IC50 value of 19 microM even though the YPT1 protein itself is unable to bind to GAP. These results suggest that determinants within Ras peptide 17-32 may be important for Ras binding to GAP.  相似文献   

15.
16.
17.
The molecular mechanism by which dual‐specificity RasGAPs of the Gap1 subfamily activate the GTP hydrolysis of both Rap and Ras is an unresolved phenomenon. RasGAPs and RapGAPs use different strategies to stimulate the GTPase reaction of their cognate G‐proteins. RasGAPs contribute an arginine finger to orient through the Gln61 of Ras the nucleophilic water molecule. RapGAP contributes an asparagine (Asn thumb) into the active site to substitute for the missing Gln61. Here, by using steady‐state kinetic assays and time‐resolved Fourier‐transform infrared spectroscopy (FTIR) experiments with wild type and mutant proteins, we unravel the remarkable mechanism for the specificity switch. The plasticity of GAP1IP4BP and RASAL is mediated by the extra GTPase‐activating protein (GAP) domains, which promote a different orientation of Ras and Rap's switch‐II and catalytic residues in the active site. Thereby, Gln63 in Rap adopts the catalytic role normally taken by Gln61 of Ras. This re‐orientation requires specific interactions between switch‐II of Rap and helix‐α6 of GAPs. This supports the notion that the specificities of fl proteins versus GAP domains are potentially different.  相似文献   

18.
19.
p120 GTPase-activating protein (GAP) down-regulates Ras by stimulating GTP hydrolysis of active Ras. In addition to its association with Ras, GAP has been shown to bind to several tyrosine-phosphorylated proteins in cells stimulated by growth factors or expressing transforming tyrosine kinase variants. Here we report the cloning and characterization of a novel GAP-binding protein, mTid-1, a DnaJ chaperone protein that represents the murine homolog of the Drosophila tumor suppressor l(2)tid gene. Three alternatively spliced variants of mTid-1 were isolated, two of which correspond to the recently identified hTid-1(L) and hTid-1(S) forms of the human TID1 gene that exhibit opposing effects on apoptosis. We demonstrate that both cytoplasmic precursor and mitochondrial mature forms of mTid-1 associate with GAP in vivo. Interestingly, although mTid-1 is found tyrosine-phosphorylated in v-src-transformed fibroblast cells, GAP selectively binds to the unphosphorylated form of mTid-1. In immunofluorescence experiments, GAP and Tid-1 were shown to colocalize at perinuclear mitochondrial membranes in response to epidermal growth factor stimulation. These findings raise the possibility that Tid chaperone proteins may play a role in governing the conformation, activity, and/or subcellular distribution of GAP, thereby influencing its biochemical and biological activity within cells.  相似文献   

20.
Toxoplasma gondii motility is powered by the myosin XIV motor complex, which consists of the myosin XIV heavy chain (MyoA), the myosin light chain (MLC1), GAP45, and GAP50, the membrane anchor of the complex. MyoA, MLC1, and GAP45 are initially assembled into a soluble complex, which then associates with GAP50, an integral membrane protein of the parasite inner membrane complex. While all proteins in the myosin XIV motor complex are essential for parasite survival, the specific role of GAP45 remains unclear. We demonstrate here that final assembly of the motor complex is controlled by phosphorylation of GAP45. This protein is phosphorylated on multiple residues, and by using mass spectroscopy, we have identified two of these, Ser163 and Ser167. The importance of these phosphorylation events was determined by mutation of Ser163 and Ser167 to Glu and Ala residues to mimic phosphorylated and nonphosphorylated residues, respectively. Mutation of Ser163 and Ser167 to either Ala or Glu residues does not affect targeting of GAP45 to the inner membrane complex or its association with MyoA and MLC1. Mutation of Ser163 and Ser167 to Ala residues also does not affect assembly of the mutant GAP45 protein into the myosin motor complex. Mutation of Ser163 and Ser167 to Glu residues, however, prevents association of the MyoA-MLC1-GAP45 complex with GAP50. These observations indicate that phosphorylation of Ser163 and Ser167 in GAP45 controls the final step in assembly of the myosin XIV motor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号