首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structural consequences of MgADP binding at the vicinity of the ATPase-related thiol SH1 (Cys-707) have been examined by subjecting myosin subfragment 1, premodified at SH2 (Cys-697) with N-ethylmaleimide (NEM), to reaction with the bifunctional reagent p-phenylenedimaleimide (pPDM) in the presence and absence of MgADP. By monitoring the changes in the Ca2(+)-ATPase activity as a function of reaction time, it appears that the reagent rapidly modifies SH1 irrespective of whether MgADP is present or not. In the absence of nucleotide, only extremely low levels of cross-linking to the 50-kDa middle segment of S1 can be detected, while in the presence of MgADP substantial cross-linking to this segment is observed. A similar cross-link is also formed if MgADP is added subsequent to the reaction of the SH2-NEM-pre-modified S1 with pPDM in the absence of nucleotide. Isolation of the labeled tryptic peptide from the cross-linked adduct formed with [14C]pPDM, and subsequent partial sequence analyses, indicates that the cross-link is made from SH1 to Cys-522. Moreover, it appears that this cross-link results in the trapping of MgADP in this S1 species. These data suggest that the binding of MgADP results in a change in the structure of S1 in the vicinity of the SH1 thiol relative to the 50-kDa "domain" which enables Cys-522 to adopt the appropriate configuration to enable it to be cross-linked to SH1 by pPDM.  相似文献   

2.
The 20-kDa fragment of myosin subfragment-1 heavy chain was cleaved with cyanogen bromide. Gel electrophoresis of the fragmented peptides indicated the presence of 20-, 18-, 16-, 14-, 12-, and 10-kDa peptides in addition to two peptides smaller than 10 kDa. The renaturation procedure of Muhlrad and Morales (Muhlrad, A., and Morales, M. (1984) Proc. Natl. Acad. Sci. U. S. A. 81, 1003-1007) was applied to the mixture of these peptides. The peptides larger than 10 kDa, which contain both the reactive SH1 and SH2 groups, were precipitated with F-actin by ultracentrifugation. The 10-kDa peptide was purified and was identified as p10 of Elzinga and Collins (Elzinga, M., and Collins, J. H. (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 4281-4284). The renaturation procedure was applied to the purified 10-kDa peptide. The 10-kDa peptide was also precipitated with F-actin by ultracentrifugation. Affinity of the 10-kDa peptide for F-actin was determined with an increase of turbidity, and the apparent dissociation constant was 0.94 microM. Results are consistent with our proposition that a binding site for F-actin exists around the SH1 and SH2 groups of subfragment-1 (Katoh, T., Imae, S., and Morita, F. (1984) J. Biochem. 95, 447-454; Katoh, T., and Morita, F. (1984) J. Biochem. 96, 1223-1230).  相似文献   

3.
In our previous study [Chalovich, J. M., Greene, L. E., & Eisenberg, E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 4909-4913], myosin subfragment 1 that was modified by having its two reactive thiol groups cross-linked by N,N'-p-phenylenedimaleimide (pPDM) was found to resemble the myosin subfragment 1-adenosine 5'-triphosphate (S-1.ATP) complex in its interaction with actin. In the present study, we examined the effect of actin on adenosine 5'-diphosphate (ADP) trapped at the active site of pPDM.S-1. Our results indicate first that, in the presence of actin, ADP is no longer trapped at the active site but exchanges rapidly with free nucleotide. Different pPDM.S-1.nucleotide complexes were then formed by exchanging nucleotide into the active site of pPDM.S-1 in the presence of actin. The binding of pPDM.S-1.ATP or pPDM.S-1.PPi to actin is virtually identical with that of unmodified S-1 in the presence of ATP. Specifically, at mu = 18 mM, 25 degrees C, pPDM.S-1.ATP or pPDM.S-1.PPi binds to unregulated actin with the same affinity as does S-1.ATP, and this binding does not appear to be affected by troponin-tropomyosin. On the other hand, pPDM.S-1.ADP and pPDM.S-1 with no bound nucleotide both show a small, but significant, difference between their binding to actin and the binding of S-1.ATP; pPDM.S-1 and pPDM.S-1.ADP both bind about 2- to 3-fold more strongly to unregulated actin than does S-1.ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin.   总被引:8,自引:0,他引:8  
The two essential thiol groups of myosin, SH-1 and SH-2, have been localized in an ~ 20K segment of the heavy chain by analysis of the distribution of radioactivity after tryptic digestion of tryptic heavy meromyosin (HMM) or papain-HMM subfragment-1, both labeled at SH-1 and SH-2 with [14C]iodoacetamide and [14C]N-ethyl maleimide, respectively. The results are discussed in the framework of earlier work (Bálint, M., Sréter, F. A., Wolf, I., Nagy, B., and Gergely, J. (1975) J. Biol. Chem. 250, 6168–6177) on the tryptic fragmentation of myosin heavy chain and in the light of more recent work on the location of a fragment that reacts with a photoaffinity analog of ATP (Szilágyi, L., Bálint, M., Sréter, F. A., and Gergely, J. (1978) Fed. Proc. 37, 1695) and of suggestions concerning the binding of ATP in the region containing the SH-1 and SH-2 (Elzinga, M., and Collins, J. H. (1977) Proc. Nat. Acad. Sci. USA74, 4281–4284).  相似文献   

5.
R E Hurd  E Azhderian  B R Reid 《Biochemistry》1979,18(18):4012-4017
We have studied the effects of Co2+ and Mn2+ ions on the low-field nuclear magnetic resonance (NMR) spectra of pure class 1 transfer ribonucleic acid (tRNA) species. With 1.2 mM tRNA in the presence of 15 mM MgCl2 discrete paramagnetic effects were observed for Co2+ at concentrations in the range 0.02--0.1 mM and for Mn2+ in the range 0.002--0.01 mM, indicating fast exchange of these cations with tRNA. Both of these cations paramagnetically relax the s4U8--A14 resonance as well as other resonances from proximal base pairs. The Co2+ site appears to be the same site on G15 which was observed crystallographically [Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S., & Klug, A. (1977) J. Mol. Biol. 111, 315-328]; the initially occupied tight Mn2+ site is the cation site involving the phosphate of U8. There are three base pairs within 10 A of both sites, namely, G15--C48, A14--s4U8, and C13--G22; this has led to the assignment of the G15--C48 and C13--G22 resonances in the NMR spectrum [Jack, A., Ladner, J. E., Rhodes, D., Brown, R. S., & Klug, A. (1977) J. Mol. Biol. 111, 315--328; Holbrook, S. R., Sussman, J. L., Warrant, R. W., Church, G. M., & Kim, Sung-Hou (1977) Nucleic Acids Res. 4, 2811--2820; Quigley, G. J., Teeter, M. M., & Rich, A. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 64--68].  相似文献   

6.
In the crystal structure of the bovine heart mitochondrial F(1)-ATPase (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), the two liganded beta subunits, one with MgAMP-PNP bound to the catalytic site (beta(T)) and the other with MgADP bound (beta(D)) have closed conformations. The empty beta subunit (beta(E)) has an open conformation. In beta(T) and beta(D), the distance between the carboxylate of beta-Asp(315) and the guanidinium of beta-Arg(337) is 3.0-4.0 A. These side chains are at least 10 A apart in beta(E). The alpha(3)(betaD311C/R333C)(3)gamma subcomplex of TF(1) with the corresponding residues substituted with cysteine has very low ATPase activity unless it is reduced prior to assay or assayed in the presence of dithiothreitol. The reduced subcomplex hydrolyzes ATP at 50% the rate of wild-type and is rapidly inactivated by oxidation by CuCl(2) with or without magnesium nucleotides bound to catalytic sites. Titration of the subcomplex with iodo[(14)C]acetamide after prolonged treatment with CuCl(2) in the presence or absence of 1 mM MgADP revealed nearly two free sulfhydryl groups/mol of enzyme. Therefore, one pair of introduced cysteines is located on a beta subunit that exists in the open or partially open conformation even when catalytic sites are saturated with MgADP. Since V(max) of ATP hydrolysis is attained when three catalytic sites of F(1) are saturated, the catalytic site that binds ATP must be closing as the catalytic site that releases products is opening.  相似文献   

7.
The separation between Cys 697 (SH1) and Cys 707 (SH2) of the heavy chain of myosin subfragment-1 was previously measured by fluorescence resonance energy transfer with a donor linked to SH1 and an acceptor to SH2. In the present study the distribution of the distances between the two thiols was recovered from frequency-domain fluorometry. In the native state and in the presence of ligands such as MgADP, pyrophosphate, orthovanadate (Vi) and actin, we found wide distributions of the separations between SH1 and SH2 (11-16 A) comparable to that found in the random-coil state (20 A). These results suggest that the SH1-SH2 segment has a high degree of conformational flexibility even in native S1. The flexibility is not much affected by the physiological state of S1. However, the ligands MgADP, Vi and MgADP + Vi decrease significantly the mean SH1-SH2 distance from 27 to 17 A with the effect of MgADP+ Vi being the most pronounced. The anisotropy decay of donor-labeled S1 is biphasic with two rotational correlation times. The long component is decreased by these ligands from 289 to 93 ns, suggesting a more compact symmetric structure of S1 in the presence of the ligands. The complex S1(MgADP)Vi has been shown to be a stable analogue of S1(MgADP)Pi, an unstable intermediate that is generated in the actomyosin ATPase cycle during muscle contraction. Since the power stroke of muscle is accompanied by release of Pi from S1(MgADP)Pi, the present results are consistent with a model in which force generation can be accompanied by transition of S1 from a highly symmetric or compact structure to a more extended structure.  相似文献   

8.
T Chen  D Applegate  E Reisler 《Biochemistry》1985,24(20):5620-5625
Chemical cross-linking of actin to the 20K and 50K fragments of tryptically cleaved myosin subfragment 1 (S-1) by the zero-length cross-linking reagent 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide (EDC) was used as a probe of the acto-S-1 interface in the presence of nucleotides. The course of the two reactions was monitored by measuring on sodium dodecyl sulfate (SDS)-polyacrylamide gels the time-dependent formation of the 20K-actin and 50K-actin cross-linked products. Both reactions were inhibited somewhat in the presence of MgADP, were slowed 3-4-fold in the presence of magnesium 5'-adenylyl imidodiphosphate (MgAMPPNP), and proceeded at least 7-fold slower with N,N'-p-phenylenedimaleimide (pPDM) modified S-1, as compared to the respective rates in the absence of nucleotides. However, neither the binding of the nucleotides MgADP and MgAMPPNP to S-1 nor the modification of S-1 by pPDM significantly changed the ratio of the cross-linking rates of actin to the 20K and 50K fragments. Similar to what was previously observed in the absence of nucleotides [Chen, T., Applegate, D., & Reisler, E. (1985) Biochemistry 24, 137-144], actin was cross-linked at an approximately 3-fold faster rate to the 20K fragment than to the 50K fragment under all reaction conditions tested. Thus, irrespective of the extent of acto-S-1 dissociation or the binding of nucleotides to acto-S-1, the 20K fragment remains the preferred cross-linking site for actin. These results show that the interaction of actin with each of the cross-linking sites on S-1 is not under selective or preferential control by nucleotides.  相似文献   

9.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

10.
Synthetic peptides corresponding to the calmodulin-binding domain of the human erythrocyte Ca2+ pump were prepared representing residues 2-29 (C28W), 2-21 (C20W), 2-16 (C15W), and 16-29 (C14) of the sequence (James, P., Maeda, M., Fisher, R., Verma, A. K., Krebs, J., Penniston, J. T., and Carafoli, E. (1988) J. Biol. Chem. 263, 2905-2910). Peptides C28W, C20W, and C15W bound to calmodulin with an apparent 1:1 stoichiometry in the presence of Ca2+ and inhibited the activation of the Ca2+ pump by calmodulin, while C14 was ineffective. Substituting tyrosine (C28Y) or alanine (C28A) for the tryptophan residue lowered the affinity for calmodulin. The estimated Kd values for the calmodulin-peptide complexes were 0.1 nM for C28W, 5-15 nM for C20W, C28Y, and C28A, and 700-1700 nM for C15W. The Ca2+ pump in inside-out erythrocyte membrane vesicles was activated by proteolytic removal of the endogenous calmodulin-binding domain. Addition of C20W or C28W then inhibited calmodulin-independent Ca2+ transport, while a calmodulin-binding peptide from another enzyme had no effect. The inhibition of the pump by C20W was purely competitive with Ca2+, while C28W decreased the Vmax and increased the K1/2 for Ca2+, restoring the pump activity nearly to its low basal level. The results suggest that a calmodulin-binding peptide from any enzyme has two kinds of specificity: it shares with peptides from other enzymes the ability to bind to calmodulin, but only it has the specificity to interact with its own (proteolytically activated) enzyme.  相似文献   

11.
Labeling experiments on the biosynthesis of the polyether antibiotic lasalocid A (1) using carboxylic acid precursors bearing 13C, 2H, and 3H labels at various positions established the following: (1) 2H or 3H at C-2 of propionate or 2H at C-2 of butyrate was partially retained at C-12 and C-14 of 1, respectively. (2) 2H at C-2 of propionate or at C-2 and C-3 of succinate did not label C-10. These and earlier data [Hutchinson, C. R., Sherman, M. M., Vederas, J. C., & Nakashima, T. T. (1981) J. Am. Chem. Soc. 103, 5953; Hutchinson, C. R., Sherman, M. M., McInnes, A. G., Walter, J. A., & Vederas, J. C. (1981) J. Am. Chem. Soc. 103, 5956] are consistent with a hypothesis for the stereochemical control of lasalocid A biosynthesis, whose main tenets are that the configuration of C-12 and C-14 is determined by the stereoselectivity of the carbon chain forming condensation between acyl thio ester and 2-carboxyacyl thio ester intermediates and that the configuration of C-11 and C-15 results from the reduction of 2-keto thio ester intermediates with opposing stereospecificities.  相似文献   

12.
Mello RN  Thomas DD 《Biophysical journal》2012,102(5):1088-1096
We have used thiol cross-linking and electron paramagnetic resonance (EPR) to resolve structural transitions of myosin's light chain domain (LCD) and catalytic domain (CD) that are associated with force generation. Spin labels were incorporated into the LCD of muscle fibers by exchanging spin-labeled regulatory light chain for endogenous regulatory light chain, with full retention of function. To trap myosin in a structural state analogous to the elusive posthydrolysis ternary complex A.M'.D.P, we used pPDM to cross-link SH1 (Cys(707)) to SH2 (Cys(697)) on the CD. LCD orientation and dynamics were measured in three biochemical states: relaxation (A.M.T), SH1-SH2 cross-linked (A.M'.D.P analog), and rigor (A.M.D). EPR showed that the LCD of cross-linked fibers has an orientational distribution intermediate between relaxation and rigor, and saturation transfer EPR revealed slow rotational dynamics indistinguishable from that of rigor. Similar results were obtained for the CD using a bifunctional spin label to cross-link SH1-SH2, but the CD was more disordered than the LCD. We conclude that SH1-SH2 cross-linking traps a state in which both the CD and LCD are intermediate between relaxation (highly disordered and microsecond dynamics) and rigor (highly ordered and rigid), supporting the hypothesis that the cross-linked state is an A.M'D.P analog on the force generation pathway.  相似文献   

13.
K Ajtai  L Pótó  T P Burghardt 《Biochemistry》1990,29(33):7733-7741
The nitroxide spin label (iodoacetamido)proxyl (IPSL) was specifically and rigidly attached to sulfhydryl 1 (SH1) on myosin subfragment 1 (S1). The specificity of this label for SH1 was demonstrated by using a technique where the spin label is localized on the electrophoresis-isolated proteolytic fragments of myosin using electron paramagnetic resonance (EPR). Studies of the rigidity of the probe on SH1 indicate that the IPSL is immobilized on the surface of S1 in the presence and absence of the nucleotides MgADP or MgATP. The EPR spectrum of muscle fibers decorated with IPSL-S1 shows that the IPSL-S1 rotates from its orientation in rigor upon binding MgADP. The angular displacement due to nucleotide binding is larger than that detected with the (maleimido)tempo spin label [Ajtai, K., French, A. R., & Burghardt, T. P. (1989) Biophys. J. 56, 535-541], demonstrating that the IPSL is oriented on the myosin cross-bridge in a manner that is favorable for detecting cross-bridge rotation during the rigor to MgADP state transition.  相似文献   

14.
The myosin SH2-50-kilodalton fragment cross-link: location and consequences   总被引:6,自引:0,他引:6  
Some of us recently described a new interthiol cross-link which occurs in the skeletal myosin subfragment 1-MgADP complex between the reactive sulfhydryl group "SH2" (Cys-697) and a thiol (named SH chi) of the 50-kilodalton (kDa) central domain of the heavy chain; this link leads to the entrapment of the nucleotide at the active site [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041]. In the present study, we identify SH chi as Cys-540 of the 50-kDa fragment. The portion of the heavy chain including this residue and also extending to Cys-522 that is cross-linkable to the "SH1" thiol [Ue, K. (1987) Biochemistry 26, 1889-1894] is near the SH2-SH1 region. Furthermore, various spectral and enzymatic properties of the (Cys697-Cys540)-N,N'-p-phenylenedimaleimide (pPDM)-cross-linked myosin chymotryptic subfragment 1 (S-1) were established and compared to those for the well-known (SH1-SH2)-pPDM-cross-linked S-1. The circular dichroism spectra of the new derivative were similar to those of native S-1 complexed to MgADP. At 15 mM ionic strength, (Cys697-Cys540)-S-1 binds very strongly to unregulated actin (Ka = 7 X 10(6) M-1), and the actin binding is very weakly affected by ionic strength. Joining actin with the (Cys697-Cys540)-S-1 heavy chain, using 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, produces different species than does joining unmodified S-1 with actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Treatment of membrane vesicles from A431 cells, a human epidermoid carcinoma line, with the affinity label 5'-p-fluorosulfonylbenzoyl [8-14C]adenosine (5'-p-FSO2Bz[14C]Ado) results in an inhibition of the epidermal growth factor (EGF)-stimulable protein kinase and in the modification of proteins having the same molecular weight (Mr = 170,000 and 150,000) as the receptor for EGF (Buhrow, S. A., Cohen, S., and Staros, J. V. (1982) J. Biol. Chem. 257, 4019-4022). Modification of the vesicles with 5'-p-FSO2BzAdo inhibits not only the EGF-stimulated phosphorylation of endogenous membrane proteins but also the EGF-stimulated phosphorylation of an exogenous synthetic tyrosine-containing peptide substrate. This indicates that the EGF-stimulable protein kinase is modified by 5'-p-FSO2BzAdo at a site affecting catalytic activity. Membrane vesicles were treated with 5'-p-FSO2Bz-[14C]Ado to affinity label the kinase, then the EGF receptor was purified by affinity chromatography on immobilized EGF. The EGF receptor thus purified contains the 5'-p-SO2Bz[14C]Ado moiety. These data strongly support our hypothesis that the EGF receptor and EGF-stimulable kinase are two parts of the same polypeptide chain.  相似文献   

16.
We report a refinement in implicit water of the previously published solution structure of the Grb7-SH2 domain bound to the erbB2 receptor peptide pY1139. Structure quality measures indicate substantial improvement, with residues in the most favored regions of the Ramachandran plot increasing by 14 % and with WHAT IF statistics (Vriend, G. J. Mol. Graph., 1990, 8(1), 52-56) falling closer to expected values for well-refined structures.  相似文献   

17.
The complexes of pig muscle 3-phosphoglycerate kinase with the substrate MgATP and with the nonsubstrate Mg(2+)-free ATP have been characterized by binding, kinetic, and crystallographic studies. Comparative experiments with ADP and MgADP have also been carried out. In contrast to the less specific and largely ionic binding of Mg(2+)-free ATP and ADP, specific occupation of the adenosine binding pocket by MgATP and MgADP has been revealed by displacement experiments with adenosine and anions, as well as supported by isothermal calorimetric titrations. The Mg(2+)-free nucleotides similarly stabilize the overall protein structure and restrict the conformational flexibility around the reactive thiol groups of helix 13, as observed by differential scanning microcalorimetry and thiol reactivity studies, respectively. The metal complexes, however, behave differently. MgADP, but not MgATP, further increases the conformational stability with respect to its Mg(2+)-free form, which indicates their different modes of binding to the enzyme. Crystal structures of the binary complexes of the enzyme with MgATP and with ATP (2.1 and 1.9 A resolution, respectively) have shown that the orientation and interaction of phosphates of MgATP largely differ not only from those of ATP but also from the previously determined ones of either MgADP [Davies, G. J., Gamblin, S. J., Littlechild, J. A., Dauter, Z., Wilson, K. S., and Watson, H. C. (1994) Acta Crystallogr. D50, 202-209] or the metal complexes of AMP-PNP [May, A., Vas, M., Harlos, K., and Blake, C. C. F. (1996) Proteins 24, 292-303; Auerbach, G., Huber, R., Grattinger, M., Zaiss, K., Schurig, H., Jaenicke, R., and Jacob, U. (1997) Structure 5, 1475-1483] and are more similar to the interactions formed with MgAMP-PCP [Kovári, Z., Flachner, B., Náray-Szabó, G., and Vas, M. (2002) Biochemistry 41, 8796-8806]. Mg(2+) is liganded to both beta- and gamma-phosphates of ATP, while beta-phosphate is linked to the conserved Asp218, i.e., to the N-terminus of helix 8, through a water molecule; the known interactions of either MgADP or the metal complexes of AMP-PNP with the N-terminus of helix 13 and with Asn336 of beta-strand J are absent in the case of MgATP. Fluctuation of MgATP phosphates between two alternative sites has been proposed to facilitate the correct positioning of the mobile side chain of Lys215, and the catalytically competent active site is thereby completed.  相似文献   

18.
The photoaffinity inhibitor analog [2-3H]8-azido-AMP is specifically and covalently incorporated into Escherichia coli ADP-glucose synthetase. The reaction site(s) of [2-3H]8-azido-AMP with the enzyme was identified by reverse phase high performance liquid chromatography isolation and chemical characterization of CNBr and mouse submaxillary arginyl protease-generated peptides containing the labeled analog. Three regions of modification, represented by six labeled peptides, accounted for over 85% of the covalently bound label. The major binding region of the azido analog, composed of residues 108-128, contained approximately 55% of the recovered covalently bound radioactivity. A single residue, Tyr-113, contained between 50 and 75% of the label found in the major binding region. This site is the same as the major binding region of the substrate site-specific probe, 8-azido-ADP-[14C]glucose (Lee, Y. M., and Preiss, J. (1986) J. Biol. Chem. 261, 1058-1064). Conformational analysis of this region predicts that it is a part of a Rossmann fold, the supersecondary structure found in many adenine nucleotide-binding proteins. Two minor reaction regions of the enzyme with [2-3H]8-azido-AMP were also identified by chemical characterization. One region, containing 20% of the covalently bound label, was composed of residues 11-68. This region contains Lys-38, the previously determined pyridoxal phosphate-modified allosteric activator site (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). The third minor region of modification, residues 222-254, contained approximately 15% of the covalently bound label. The three modified peptide regions may be juxtaposed in the enzyme's tertiary structure.  相似文献   

19.
Calf pancreas microsomes incubated with UDP-N-acetyl-D-[14C] glucosamine in the presence of Mn2+ incorporated radioactivity into P1-2-acetamido-2-deoxy-D-glucopyranosyl P2-dolichyl pyrophosphate and P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate. The formation of both glycolipids was enhanced to the same extent by exogenous dolichyl phosphate. Labeled P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate was formed from synthetic P1-2-acetamido-2-deoxy-alpha-D-glucopyranosyl P2-dolichyl pyrophosphate and from prelabeled pancreatic P1-2-acetamido-2-deoxy-alpha-D-glucopyranosyl P2-dolichyl pyrophosphate without the addition of divalent cation. Upon thin layer chromatography, it had the same mobility as synthetic P1-di-N-acetyl-alpha-chitobiosyl P2-dolichyl pyrophosphate recently synthesized by Warren et al. (Warren, C. D., Herscovics, A., and Jeanloz, R. W. (1977) Carbohydr. Res., in press), but was different from the synthetic compound prepared by Wedgwood et al. (Wedgwood, J. F., Warren, C. D., Jeanloz, R. W., and Strominger, J. L. (1974) Proc. Natl. Acad. Sci. U. S. A. 71, 5022-5026).  相似文献   

20.
Avian liver mitochondrial hydroxymethylglutaryl-CoA synthase contains an active-site cysteine involved in forming the labile acetyl-S-enzyme intermediate. Identification of and assignment of function to this cysteine have been accomplished by use of an experimental strategy that relies upon generation and rapid purification of the S-acetylcysteine-containing active-site peptide under mildly acidic conditions that stabilize the thioester adduct. Automated Edman degradation techniques indicate the peptide's sequence to be Arg-Glu-Ser-Gly-Asn-Thr-Asp-Val-Glu-Gly-Ile-Asp-Thr-Thr-Asn-Ala-Cys-Tyr. The acetylated cysteine corresponds to position 129 in the sequence deduced from cDNA data for the hamster cytosolic enzyme [Gil, G., Goldstein, J.L., Slaughter, C.A., & Brown, M.S. (1986) J. Biol. Chem. 261, 3710-3716]. The acetyl-peptide sequence overlaps that reported for a tryptic peptide that contains a cysteine targeted by the affinity label 3-chloropropionyl-CoA [Miziorko, H. M., & Behnke, C. E. (1985) J. Biol. Chem. 260, 13513-13516]. Thus, availability of these structural data allows unambiguous assignment of the acetylation site on the protein as well as a refinement of the mechanism explaining the previously observed affinity labeling of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号