首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abstract Component B ( N -7-mercaptoheptanoyl-threonine- O -3-phosphate) (HS-HTP) which is an absolute requirement in the methylcoenzyme M methylreductase reaction was found to be part of a complex UDP-disaccharide when isolated carefully from cell-free supernant of Methanobacterium thermoautotrophicum . The site of attachment of HS-HTP to the UDP-disaccharide was through a carboxylic-phosphoric anhydride linkage of the C-6 mannosaminuronic acid to the phosphate group in HS-HTP. This bond is quite labile and this may account for the fact that the intact molecule, called methyl reducing factor (MRF) was not isolated previously. The structure of MRF was determined by combined fast atom bombardment mass spectrometry and 1H-, 13C-, and 31P-NMR spectroscopy and assigned as: uridine 5'-[ N -7-mercaptoheptanoyl- O -3-phosphothreonine(2-acetamido-2-deoxy- β -mannopyranuronosyl)acid anhydride]-(1 → 4)- O -2-acetamido-2-deoxy α -glucopyranosyl diphosphate.  相似文献   

2.
The methylcoenzyme M methylreductase reaction has an absolute requirement for 7-mercaptoheptanoylthreonine phosphate or component B, which is the active component of the intact molecule previously referred to as cytoplasmic cofactor. A hydrolytic fragment of cytoplasmic cofactor has been purified and identified as uridine 5'-(O-2-acetamido-2-deoxy-beta-manno-pyranuronosyl acid (1----4)-2-acetamido-2-deoxy-alpha-glucopyranosyl diphosphate) by high resolution NMR and fast atom bombardment mass spectro-metry. It is postulated that UDP-disaccharide may function to anchor 7-mercaptoheptanoyl threonine phosphate at the active site of the methyl-reductase enzyme complex.  相似文献   

3.
Uridine-5'-diphospho-N-acetylglucosamine, when oxidized with periodate to the corresponding aldehyde (o-UDP-GlcNAc), was a potent inhibitor of the methylcoenzyme M methylreductase reaction which catalyzes the reductive demethylation of methylcoenzyme M to methane. The oxidation product, o-UDP-GlcNAc, appears to bind to the UDP-GlcNAc site of the enzyme and inhibits the reduction of methylcoenzyme M both by MRF or its active hydrolytic fragment HS-HTP. The kinetic patterns indicate that o-UDP-GlcNAc inhibition is noncompetitive with HS-HTP or MRF, and the Hill coefficient indicated that there was cooperativity between the UDP and HS-HTP binding sites. The methylreductase enzyme was protected from o-UDP-GlcNAc inhibition by prior exposure to low concentrations of MRF. HS-HTP, at the same concentration as MRF, was not effective in protecting the enzyme from inhibition by o-UDP-GlcNAc.  相似文献   

4.
The structure of component B of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). The work described here demonstrates that this compound is found in two forms: enzyme-free and enzyme-bound. HS-HTP was found to be bound to component C of the methylcoenzyme M methylreductase system. The cofactor extracted from the protein by heat denaturation was found to comigrate with the mixed disulfide of HS-HTP and 2-mercaptoethanol by high-performance liquid chromatography, suggesting HS-HTP is not modified in the bound state.  相似文献   

5.
The structure of component B of the methylcoenzyme M methylreductase system from Methanobacterium thermoautotrophicum was recently found to be 7-mercaptoheptanoylthreonine phosphate (HS-HTP). Three potential roles for this cofactor were considered. First, a methyl thioether derivative of the cofactor was synthesized to investigate its possible role as a methyl donor. This derivative was found to be incapable of acting as a substrate for methanogenesis and proved inhibitory. Secondly, an adenylated form of the cofactor was considered as the potential active form of the coenzyme. This possibility was ruled out based upon collaborative observations with Ankel-Fuchs et al. (FEBS Lett., in press) that HS-HTP is required by the methylreductase system even when ATP is not. Finally, HS-HTP was found to act as a reductant in a partially-purified methylreductase preparation that was incubated under nitrogen. The rate of methane production from HS-HTP exceeded that from other thiols or hydrogen.  相似文献   

6.
The structure of component B of the methylcoenzyme M methylreductase of Methanobacterium thermoautotrophicum was recently assigned as 7-mercaptoheptanoylthreonine phosphate (HS-HTP) (Noll, K. M., Rinehart, K. L., Jr., Tanner, R.S., and Wolfe, R.S. (1986) (Proc. Natl. Acad. Sci. U.S.A. 83, 4238-4242). We report here the chemical synthesis and biochemical activity of this compound. Thiourea and 7-bromoheptanoic acid were used to to synthesize 7,7'-dithiodiheptanoic acid. This disulfide was then condensed with DL-threonine phosphate using N-hydroxysuccinimide and dicyclohexylcarbodiimide. The product was reduced with dithiothreitol to give HS-HTP. It could be oxidized in air in the presence of 2-mercaptoethanol to give the compound as it was isolated from cell extracts. The resulting product was identical to the authentic compound by 1H NMR spectroscopy, mass spectrometry, and coelution using high performance liquid chromatography. The synthetic compound is active in the in vitro methanogenic assay at concentrations comparable to the authentic compound. This confirms the structure of component B as HS-HTP and provides a means to synthesize quantities sufficient for studies of the methylreductase system.  相似文献   

7.
The hydrogen-dependent reduction of methylcoenzyme M catalyzed by coenzyme-depleted cell-free extracts of Methanobacterium thermoautotrophicum was stimulated by micromolar concentrations of a UDP-disaccharide present in the organism. The compound was isolated and identified as UDP-1-O-alpha-D-2-acetamido-2-deoxyglucopyranose (UDPGlcpNAc) glycosidically linked to 2-acetamido-2-deoxymannopyranosyluronic acid. Maximal stimulation was observed when both the UDP-disaccharide and mercaptoheptanoylthreonine phosphate were present in the reaction mixtures. The UDP derivative isolated was not specific in its action: other UDP-sugars tested in micromolar concentrations stimulated the methylcoenzyme M reduction to the same extent. The activated sugars presumably substitute for ATP, which is usually required in much higher concentrations to activate the methylcoenzyme M reductase system.  相似文献   

8.
We have developed techniques for the separation of unsulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo- hex-4-enopyranosyluronicacid)-D-galactose and -D-glucose), monosulfated (2-acetamido-2-deoxy-3- O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-D-galactose and 2-acetamido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex- 4-enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose),disulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O-sulfo-alpha-L-threo-hex-4- enopyranosyluronic acid)-4-sulfo-D-galactose and -6-sulfo-D-galactose and 2-acet-amido-2-deoxy-3-O-(4-deoxy-alpha-L-threo-hex-4-enopy- ranosyluronic acid)-4,6-di-O-sulfo-D-galactose), and trisulfated (2-acetamido-2-deoxy-3-O-(4-deoxy-2-O- sulfo-alpha-L-threo-hex-4-enopyranosyluronic acid)-4,6-di-O-sulfo-D-galactose) isomers of chondroitin using capillary zone electrophoresis. In addition, it is possible to separate oligomers of hyaluronan by similar protocols. These techniques represent a rapid, sensitive, and reproducible technique for the assay of these molecules from digests of connective tissues.  相似文献   

9.
The synthesis and biological activities of a new class of antiproliferative glycolipids with an unexpected broad spectrum of activity, including a human multidrug resistant cell line, are described. Chemically these compounds are glycolipids derived from N-acetyl-D-glucosamine and glycyrrhetinic acid (beta-aglycone). Peptidation of the glucoacids allyl 3 beta-[[2-acetamido-3-O-[(R)-1-carboxyethyl]- 2-deoxy-4,6-O-isopropylidene-beta-D-glucopyranosyl]oxy]-11-oxo-12- oleanen-30-oate and (R,S)-2-methoxy-3-(octadecyloxy)propyl-2-acetamido-3-O-[(R)-1-carb oxyethyl]- 2-deoxy-4,6-O-isopropylidene-beta-D-glucopyranoside was successfully achieved after activation with O-benzotriazolyl-N,N,N',N' -tetramethyluronium hexafluorophosphate.  相似文献   

10.
The use of high-performance liquid chromatography for the quantification of glycosaminoglycan disaccharides has been hampered by the inability to isocratically resolve the chondroitinase digestion products 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-glucose (delta Di-HA) and 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (delta Di-OS). To overcome this limitation, we have developed a solvent system capable of resolving delta Di-HA, delta Di-OS, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose (delta Di-6S), and 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose (delta Di-4S). Integrator responses were linear from 1 microgram down to 25 ng for delta Di-HA, delta Di-OS, and delta Di-4S and down to 100 ng for delta Di-6S. This method was used to examine changes in the content of urinary hyaluronic acid and chondroitin sulfates isolated from normal individuals and from patients with Lowe Syndrome, Werner Syndrome, and Hutchinson-Gilford Progeria Syndrome. We confirmed that the HPLC method gave results comparable to colorimetric methods.  相似文献   

11.
Oversulphated chondroitin sulphate proteoglycan from squid skin was isolated from 4 M guanidine hydrochloride extract by ion-exchange chromatography, gel chromatography and density gradient centrifugation. The proteoglycan had Mr 3.5 x 10(5), contained on average six oversulphated chondroitin sulphate chains (Mr 4 x 10(4)) bound on a polypeptide of Mr 2.8 x 10(4), and oligosaccharides consisting of both hexosamines, glucuronic acid, sulphates and fucose as the only neutral monosaccharide. The major amino acids of the proteoglycan protein core are glycine (corresponding to about one third of the total amino acids), aspartic acid/asparagine and serine, together amounting to 50% of the total. The proteoglycan was resistant to the proteolytic enzymes V8 protease, trypsin (treated with diphenylcarbamoyl chloride), alpha-chymotrypsin and pronase, while it was completely degraded by papain and to a large extent by collagenase. Pretreated proteoglycan with chondroitinase AC was degraded by pronase to a large extent and slightly by V8 protease and trypsin. The proteoglycan did not interact with hyaluronic acid and did not form self-aggregates. Oversulphated chondroitin sulphate chains were composed of unusual sulphated disaccharide units which were isolated and characterized by HPLC. In particular, it contained 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 4-sulphate (delta di-4S) and disulphated disaccharides (delta di-diS) [90% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 6-sulphate (delta di-diSD) and 10% 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid 2/3-sulphate)-D-galactose 4-sulphate (delta di-diSK)] as the major disaccharides, significant amounts of trisulphated disaccharides (delta di-triS) and small amounts of 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose 6-sulphate (delta di-6S) and 2-acetamido-2-deoxy-3-O-(alpha-L-threo-4-enopyranosyluronic acid)-D-galactose (delta di-OS). Trisulphated disaccharides contained sulphate groups at C-4 and C-6 of the galactosamine and at C-2 or C-3 of the glucuronic acid. By HPLC analysis of a pure preparation of oversulphated chondroitin sulphate, it was found that it contains glucose, galactose, mannose and fucose most likely as branches.  相似文献   

12.
Condensation of benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2- deoxy-3-O-[(R)-1-carboxyethyl]-alpha-D-glucopyranoside (2) and its 4-acetate (4) with L-alanyl-D-isoglutamine benzyl ester via the mixed anhydride method yielded N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-lacto yl)-L- alanyl-D-isoglutamine benzyl ester (5) and its 4-acetate (6), respectively. Condensation by the dicyclohexylcarbodi-imide-N-hydroxysuccinimide method converted 2 into benzyl 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl- 2-deoxy-beta-D-glucopyranosyl)-3-O-[(R)-1-carboxyethyl]-2-deoxy-alpha-D- glucopyranoside 1',4-lactone (7). In the presence of activating agents, 7 underwent aminolysis with the dipeptide ester to give 5. Zemplén O-deacetylation of 5 and 6 led to transesterification and alpha----gamma transamidation of the isoglutaminyl residue to give N-(2-O-[benzyl 2-acetamido-6-O-(2- acetamido-2-deoxy-beta-D-glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyr anosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (8) and -glutamine methyl ester (9). Treatment of 6 with MgO-methanol caused deacetylation at the GlcNAc residue to give a mixture of N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2- deoxy-beta-D-glucopyranosyl)-4-O-acetyl-2,3-dideoxy-alpha-D-glucopyra nosid-3- yl]-(R)-lactoyl)-L-alanyl-D-isoglutamine methyl ester (11) and -glutamine methyl ester (12). Benzyl or methyl ester-protection of peptidoglycan-related structures is not compatible with any of the reactions requiring alkaline media. Condensation of 2 with L-alanyl-D-isoglutamine tert-butyl ester gave N-(2-O-[benzyl 2-acetamido- 6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl)-2,3-d ideoxy- alpha-D-glucopyranosid-3-yl]-(R)-lactoyl-L-alanyl-D-isoglutamine tert-butyl ester (16), deacetylation of which, under Zemplén conditions, proceeded without side-reactions to afford N-(2-O-[benzyl 2-acetamido-6-O-(2-acetamido-2-deoxy-beta-D- glucopyranosyl)-2,3-dideoxy-alpha-D-glucopyranosid-3-yl]-(R)-la cotyl)-L- alanyl-D-isoglutamine tert-butyl ester (17).  相似文献   

13.
N-Acetyl-1-thiomuramoyl-L-alanyl-D-isoglutamine and some lipophilic analogs were synthesized from benzyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]- alpha-D-glucopyranoside (1). O-Debenzoylation of 2, derived from 1 by oxidation, gave 2-acetamido-2-deoxy-4,6-O-isopropylidene-3-O-[D-1-(methoxycarbonyl)ethyl ]-D-glucopyranose (3). Condensation of the alkoxy-tris(dimethylamino)phosphonium chloride (4), formed from 3 by the action of carbon tetrachloride and tris(dimethylamino)phosphine, with potassium thioacetate afforded 2-acetamido-1-S-acetyl-2-deoxy-4,6-O-isopropylidene-3-O-[ D-1-(methoxycarbonyl)ethyl]-1-thio-beta-D-glucopyranose (8). Coupling of the acid 9, obtained from 8 by hydrolysis and subsequent S-acetylation, with the methyl ester of L-alanyl-D-isoglutamine gave N-[2-O-(2-acetamido-1-S-acetyl-2,3-dideoxy-4,6-O- isopropylidene-1-thio-beta-D-glucopyranose-3-yl)-D-lactoyl]-L-alan yl-D- isoglutamine methyl ester (10), which was converted, via O-deisopropylidenation, S-deacetylation, and de-esterification, into the N-acetyl-1-thiomuramoyl dipeptide. Condensation of 11 (derived from 10 by S-deacetylation) and of 12 (obtained from 10 by S-deacetylation and de-esterification) with various acyl chlorides yielded the corresponding 1-S-acyl-N-acetylmuramoyl-L-alanyl-D-isoglutamine derivatives, which were converted into the desired, lipophilic 1-thiomuramoyl dipeptides by cleavage of the isopropylidene group. Condensation of 11 with the alkyl bromides yielded the 1-S-alkyl derivatives, which were also converted, via O-deisopropylidenation and de-esterification, into the corresponding 1-S-alkylmuramoyl dipeptides. The biological activities were examined in guinea-pigs and mice.  相似文献   

14.
The total synthesis of the threonine-linked core 2 class disialylated hexasaccharide in a completely protected form was accomplished for the first time. The L-threonine conjugate, N-(9-fluorenylmethoxycarbonyl)-O-[(5-acetamido-4,7,8,9-tetra-O-ben zyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2-->3)-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2-acetam ido-2-deoxy-3,6-di-O-benzyl-beta-D-glucopyranosyl-(1-->6)-[(5-acetamido- 4,7,8,9-tetra-O-benzyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulo pyranosylonic acid)-(2-->3)-2,6-di-O-benzyl-beta-D-galactopyranosyl-(1-->3)]-2-acetami do-2-deoxy-alpha-D-galactopyranosyl-(1d-->4c:1f-->4e)-dilactone ]-L-threonine allyl ester was synthesized via stereocontrolled glycosylations employing readily accessible monosaccharidic blocks; t-butyl-diphenylsilyl-2-azido-2-deoxy-3,6-di-O-benzyl-beta-D-gluco pyranose, N-(9-fluorenylmethoxycarbonyl)-O-(2-azido-6-O-t-butyldimethylsilyl -2-deoxy-alpha-D-galactopyranosyl)-L-threonine allyl ester, 8, 9 and N-(9-fluorenylmethoxycarbonyl)-O-(2-azido-4,6-O-benzylidene-3-O-ch loroacetyl-2-deoxy-alpha-D-galactopyranosyl)-L-threonine allyl ester. For the introduction of the amino acid, the azide group was used to temporarily mask the amino group of GalNAc so as to obtain an alpha-glycosidic linkage without participation from the C-2 substituent. The threonine was attached to the sugar unit at the monosaccharide stage to avoid loss of oligosaccharide at a later stage. The Fmoc and allyl ester protected amino acid at the reducing end facilitates efficient glycopeptide synthesis on solid-phase support.  相似文献   

15.
The electron donor (component B) to the methyl coenzyme M methylreductase system from Methanosarcina thermophila was isolated as the 7-methyl derivative and characterized. Gas chromatography-mass spectrometry and 1H NMR analyses identified this derivative as 7-methylthioheptanoylthreonine phosphate (CH3-S-HTP), indicating that the original component B had the same structure (HS-HTP) as previously determined for component B from Methanobacterium thermoautotrophicum. The heterodisulfide of HS-HTP and coenzyme M (HS-CoM, 2-mercaptoethanesulfonate) was enzymatically reduced in cell extracts using electrons supplied by either H2 or CO, confirming that HS-HTP was a functional molecule in M. thermophila.  相似文献   

16.
SB-424323 is a new, orally active anti-thrombotic agent presently in phase-II clinical development, with limited hemorrhagic risk and a unique mechanism of action involving the induction of glycosaminoglycans (GAGs) biosynthesis. The objective of the present study was to develop a simple and rapid high performance liquid chromatography (HPLC) method for determination of endogenous GAGs derived disaccharides in plasma samples from a phase-II clinical study of SB-424323. Sample preparation was a simple heat treatment of the diluted plasma followed by digestion of endogenous GAGs with chondroitinase ABC to yield unsaturated disaccharides, 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-0S), 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-4-O-sulfo-D-galactose (DeltaDi-4S), and 2-acetamido-2-deoxy-3-O-(beta-D-gluco-4-enepyranosyluronic acid)-6-O-sulfo-D-galactose (DeltaDi-6S). These disaccharides were recovered and purified using centrifugal filtration through a filter with 3000 molecular weight cut-off along with externally added internal standard 2-acetamido-2-deoxy-3-O-(2-O-sulfo-beta-D-gluco-4-enepyranosyluronic acid)-D-galactose (DeltaDi-UA2S). A gradient reverse phase HPLC separation was developed on a Waters Symmetry C(18) column (4.6 mm x 150 mm, 5 microm) with a gradient mobile phase system consisting of 0.8 mM tetrabutylammonium hydrogen sulfate and 2mM sodium chloride and acetonitrile at a flow rate of 1.0 mL/min. The eluate was monitored with an ultraviolet detector set at 230 nm. Plasma standard curves were linear (r(2)> or =0.994) in the concentration range 1.0-20 microg/mL with a lower limit of quantification (LLOQ) of 1.0 microg/mL for each of the disaccharide. The mean measured quality control (QC) concentrations for the disaccharides deviated from the nominal concentrations in the range of -8.92 to 5.61% and -16.3 to 16.7%, for inter and intra-day, respectively. The inter and intra-day precision in the measurement of QC samples, were in the range of 3.21 to 18.2% relative standard deviation (R.S.D.) and 0.32 to 20.9% R.S.D., respectively. The inter and intra-day precision in the measurement of endogenous GAGs derived disaccharides in human control plasma, were in the range of 5.8 to 15.9% R.S.D. and 1.17 to 7.74% R.S.D., respectively. Stability of the processed samples was confirmed up to 48 h in the auto-sampler. The method is simple, reliable, and easily adaptable to analysis of large number of samples under logistics of a clinical study. The present method has been used to investigate the GAGs levels in the plasma of patients in a phase II clinical study of SB-424323.  相似文献   

17.
2-Bromoethanesulfonate (BES) inhibition of methanogenesis from methanol by resting-cell suspensions or cell extracts of Methanosarcina was reversed by coenzyme M. BES inhibition of methylcoenzyme M methylreductase activity in cell-free extracts was reversed by methylcoenzyme M but not by coenzyme M. Methanol/coenzyme M methyltransferase activity was not inhibited by 10 microM BES. Inhibition of methylreductase by BES and 3-bromopropionate was competitive with methylcoenzyme M, but inhibition by 2-bromoethanol exhibited mixed kinetics. The Ki values for the inhibitors in cell-free extracts were similar to the concentrations which inhibited intact cells. BES-resistant mutants of strain 227 were apparently permeability mutants because in vitro assays showed that mutant and parent strain methylreductases were equally sensitive to BES.  相似文献   

18.
An unusual fumarate reductase was purified from cell extracts of Methanobacterium thermoautotrophicum and partially characterized. Two coenzymes previously isolated from cell extracts, 2-mercaptoethane-sulfonic acid (HS-CoM) and N-(7-mercaptoheptanoyl)threonine-O3-phosphate (HS-HTP), were established as direct electron donors for fumarate reductase. By measuring the consumption of free thiol, we determined that fumarate reductase catalyzed the oxidation of HS-CoM and HS-HTP; by the direct measurement of succinate and the heterodisulfide of HS-CoM and HS-HTP (CoM-S-S-HTP), we established that these compounds were products of the fumarate reductase reaction. A number of thiol-containing compounds did not function as substrates for fumarate reductase, but this enzyme had high specific activity when HS-CoM and HS-HTP were used as electron donors. HS-CoM and HS-HTP were quantitatively oxidized by the fumarate reductase reaction, and results indicated that this reaction was irreversible. Additionally, by measuring formylmethanofuran, we demonstrated that the addition of fumarate to cell extracts activated CO2 fixation for the formation of formylmethanofuran. Results indicated that this activation resulted from the production of CoM-S-S-HTP (a compound known to be involved in the activation of formylmethanofuran synthesis) by the fumarate reductase reaction.  相似文献   

19.
3,4,6-Tri-O-acetyl-D-galactal was transformed into methyl 6-O-acetyl-2-azido-4-O-benzyl-2-deoxy-beta-D-galactopyranoside and its 4-O-acetyl-6-O-benzyl analogue, each of which was glycosylated with activated, O-acetylated derivatives of methyl D-glucopyranosyluronate. The resulting beta-(1----3)-linked disaccharide derivatives were each reductively N-acetylated, hydrogenolysed, O-sulfated, and saponified to afford the disodium salts of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside and the 6-O-sulfo analogue. D-Galactal was also transformed into activated derivatives of 2-azido-3,6-di-O-benzyl-2-deoxy-D-galactopyranose and their 3,4-di-O-benzyl analogues with various substituents at O-4 and O-6. These glycosyl donors were condensed with 6-O-protected derivatives of methyl 2,3-di-O-benzyl-beta-D-glucopyranoside to give the beta-(1----4)-linked disaccharide derivatives, which were selectively deprotected, then oxidised at C-6 of the gluco unit, reductively N-acetylated, selectively deprotected, O-sulfated at C-4 or C-6 of the galacto unit, and hydrogenolysed to give the disodium salts of methyl 4-O-(2-acetamido-2-deoxy-4-O-sulfo-beta-D-galactopyranosyl)-beta-D- glucopyranosiduronic acid and the 6-O-sulfo analogue.  相似文献   

20.
Component A2 of the methylcoenzyme M methylreductase system of Methanobacterium thermoautotrophicum has been purified 370-fold by liquid chromatography. Homogeneity was obtained by anaerobic preparative polyacrylamide gel electrophoresis. Component A2 is a colorless, air-stable protein consisting of a single polypeptide as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The relative molecular mass of the native protein was determined by high-performance, size exclusion chromatography to be Mr 52,000; on sodium dodecyl sulfate-polyacrylamide gel electrophoresis a value of Mr 59,000 was obtained. When cell extract was subjected to N6-ATP-agarose affinity chromatography the methylcoenzyme M methylreductase system was resolved into two fractions; one of them was component A2. This work provides a new operational definition for component A2, i.e., its characteristic chromatographic behavior on N6-ATP-agarose. However, its functional definition is its ability to reconstitute the methylreductase activity with components A1, A3, and C. Several attempts to assign a role to component A2 are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号