首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effects of detergents on the electronic structure of the oxidized primary donor P+ and the time constant AP of the P+Q A charge recombination at ambient temperatures have been investigated in native and mutant reaction centers (RCs) from Rhodobacter sphaeroides. It is shown that N-lauryl-N,N-dimethyl-3-ammonio-1-propane sulfonate (SB12) induces a transition to a second distinct conformation of the RC. In the case of the wild type and the mutant FY(M197), in which a hydrogen bond is introduced to the 2-acetyl group of the dimer half of P that is associated with the M-subunit of the RC, the conformational change causes a more asymmetric spin density distribution between the two bacteriochlorophyll moieties of P+ in favor of the L-half. For both types of RCs the time constant AP depends on the SB12/RC ratio as does the position of the long-wavelength band of P, max. The increase of AP by 30 ms and the shift of max from 866 nm to 851 nm are indicative for the conformational change. In addition, a smaller linear increase of AP with increasing SB12/RC ratio is superimposed on the variation of AP due to the conformational change. Similar effects of SB12 on the optical spectra as well as on AP are also observed for the two heterodimer mutants HL(L173) and HL(M202), in which one of the bacteriochlorophylls of P is replaced by a bacteriopheophytin. There are no clear indications for a correlation of AP with the localization of the positive charge in P+. Furthermore, it is concluded from the dependence of AP on the SB12/RC ratio that the single-site mutations do not affect the standard free energy difference of the two conformations to a measurable extent.  相似文献   

2.
In this paper we use a dynamical systems approach to prove the existence of a unique critical value c * of the speed c for which the degenerate density-dependent diffusion equation u ct = [D(u)u x ] x + g(u) has: 1. no travelling wave solutions for 0 < c < c *, 2. a travelling wave solution u(x, t) = (x - c * t) of sharp type satisfying (– ) = 1, () = 0 *; '(*–) = – c */D'(0), '(*+) = 0 and 3. a continuum of travelling wave solutions of monotone decreasing front type for each c > c *. These fronts satisfy the boundary conditions (– ) = 1, '(– ) = (+ ) = '(+ ) = 0. We illustrate our analytical results with some numerical solutions.  相似文献   

3.
The time constant of the process producing the delay in Na inactivation development as determined by the two pulse method (delay) was extracted and compared to that of the slowest Na activation process 3 for the I Na during the conditioning pulse of that same determination. delay and two pulse inactivation c values were computer generated using a nonlinear least squares algorithm. h and single pulse inactivation h values were independently generated for each determination also with the aid of the computer using the same non-linear least squares algorithm. In one determination at 2 mV, c was 4.68 and delay 0.494 ms while h was 4.70 and 3 0.491 ms for a c/h of 0.996 and a delay/3 of 1.006. Mean delay/3 from five determinations in four axons, both Cs and K perfused, and spanning a potential range of-27 to 2mV was 1.068. The precursor process to inactivation is channel opening. Some fraction of channels presumably inactivate via another route where prior channel opening is not required.  相似文献   

4.
Summary We have analyzed a combined use of the two-dimensional nuclear Overhauser effect in the laboratory frame (NOESY) and in the rotating frame (ROESY) to determine interproton distances and correlation time in medium-sized rigid molecules (Davis, 1987). This method can be applied in the intermediate motional regime, 0.2 < oc, < 5, (c, correlation time, (o resonance frequency). Error limits depend on the motional regime and are smallest near oc=1.14.The method was tested on six geminal proton pairs in the bicyclic octapeptide (S-deoxo--[R]-OH-Ile3 amaninamide, Mw =870) for which at 297 K in DMSO, a correlation time of 1.0 ns, with a standard deviation of 0.12 ns, and an interproton distance of 1.87 Å, with standard deviation of 0.04 Å, are obtained.  相似文献   

5.
Large conductance (approximately 210 pS), K+-selective channels were identified in excised, insideout patches obtained from the apical membranes of both ciliated and nonciliated epithelial cells grown as monolayers from the primary culture of rabbit oviduct. The open probability of channels showing stable gating was increased at positive membrane potentials and was sensitive to the concentration of free calcium ions at the cytosolic surface of the patch ([Ca2+] i ). In these respects, the channel resembled maxi K+ channels found in a number of other cell types. The distributions of dwell-times in the open state were most consistently described by two exponential components. Four exponential components were fitted to the distributions of dwelltimes in the closed state. Depolarizations and [Ca2+] i increases had similar effects on the distribution of open dwell-times, causing increases in the two open time constants ( o1 and o2) and the fraction of events accounted for by the longer component of the distribution. In contrast, calcium ions and voltage had distinct effects on the distribution of closed dwelltimes. While the three shorter closed time constants ( c1, c2 and c3) were reduced by depolarizing membrane potentials, increases in [Ca2+] i caused decreases in the longer time constants ( c3 and c4). It is concluded that oviduct large conductance Ca2+-activated K+ channels can enter at least two major open states and four closed states.A.F.J. was supported by a research fellowship from the Japan Society for the Promotion of Science and received a grant for laboratory expenses from the Ministry of Education, Science and Culture, Japan. The authors wish to thank Dr. Shigetoshi Oiki for valuable discussion of the analysis of gating kinetics and Dr. Jeman Kim (Kyoto Pharmaceutical University) for making the transmission electron micrographs.  相似文献   

6.
In this paper we give an analytical reformulation of Holling's (1966) simulation model for invertebrate predatory behaviour. To this end we represent a population of predators as a frequency distribution over a space of (physiological) states. The functional response of a predator is calculated from the (stable) equilibrium distribution of its state as a function of prey density.Starting from the general model various other models are obtained by limit processes, some of them new and some of them old. The more interesting of which will be studied in further papers in this series.List of Notation a rate constant of digestion - b maximum of rate constant of prey encounter in the mantid - b maximum pursuit duration in the mantid (p(0)) - c satiation threshold for search - c satiation threshold for pursuit in the mantid: c=c(b-Ds/v)/b - D m maximum sighting distance - D p pursuit distance - D s strike distance - expectation operator - f, f 0 rate of change of satiation during search - f 1 rate of change of satiation during prey handling - F functional response: number of prey eaten per unit of time by one predator - g rate constant of effective prey encounter in the gobbler and sucker - g0 rate constant of prey encounter - g1 probability of no prey loss from pursuit - g2 probability of no prey escaping during pursuit - H Holling secretary correction factor in the sucker: fraction of the time spent searching - k R density of R - kT probability density of maximum prey handling time - K probability that maximum prey handling time is e, i.e. pursuit duration is zero - K R distribution function of R - N number of prey caught - p (marginal) density of S - p0 density of S in search - p1 simultaneous density of S and T - P probability - p 1 marginal density of S in handling prey - q probability of strike success - R ratio of realized to maximum sighting distance - s, S satiation - satiation axis - t time - handling time axis - u eating speed - U homogeneous(0,1) random variable - v pursuit speed - V exponential(1) random variable - w prey weight - W exponential(m) random variable - x prey density - ratio of maximum successful pursuit duration to meal duration (pm/e) - pm - relative duration of successful pursuit (p/pm) - ratio of shortest to largest sighting distance - xe - time already spent handling a prey item - rate of prey loss during prey handling - prey escape rate during pursuit - prey biomass density (xw) - , T maximum time still to be spent handling a prey item - e meal duration - m maximum handling time ( e+ p) - p duration of successful pursuit - pm maximum duration of successful pursuit (p(0)) - hazard rate - m maximum of hazard rate - scaled functional response (wF) - minimal i-state space  相似文献   

7.
Summary Activation kinetics of single high-threshold inactivating (HTI orN-type) calcium channels of cultured dorsal root ganglion cells from mouse embryos was studied using a patchclamp method. Calcium channels displayed bursting activity. The open-time histogram was single exponential with an almost potential-independent mean open time op. The closed-time histogram was multicomponent; at least three of the components were associated with the activation process. The fast exponential component with the potential-independent time constant cl f included all intraburst gaps, while two slower ones with potential-dependent time constants cl vs described shut times between bursts and between clusters of bursts. The burst length histogram was biexponential. The fast component with a relatively potential-independent time constant bur f described short, isolated channel openings while the slow component characterized real bursts with a potential-dependent mean life time. The waiting-time histogram could be fitted by a difference of two exponentials with time constants being the same as cl s and cl vs . The data obtained were described in the frame of a 4-state sequential model of calcium channel activation, in which the first two stages are formally attributed to potential-dependent transmembrane transfer of two charged gating particles accompanying the channel transitions between three closed states, and the third one to fast conformational changes in channel protein leading to the opening of the channel. The rate constants for all transitions were defined. The validity of the proposed model for both low-threshold inactivating (LTI orT-type) and high-threshold noninactivating (HTN orL-type) calcium channels is discussed.  相似文献   

8.
The results of a series of experiments conducted in our laboratory on the ornamental common carp (koi), aimed at optimizing heat-shock chromosome-set manipulation procedures, are described. The timing of heat-shock initiation was expressed in the relative unit of embryological age (0) in order to standardize this parameter, the absolute time for heat-shock initiation being calculated from duration of one 0 at two different pre-treatment water temperatures. Heat shocks were applied within the periods of 0.05–0.60 0 and 1.20–2.20 0 which, respectively, cover the successive phases of the 2nd meiotic division and the 1st cleavage. The highest production of diploid gynogenetic offspring was observed when heat shocks were initiated at 0.15–0.25 0 and at 1.5 0, after insemination, corresponding to anaphase of meiosis-II, and metaphase of the 1st cleavage, respectively. Similar results were obtained irrespective of the different pre-treatment water temperatures, thus confirming the possibility of standardizing heat-shock timing by 0.  相似文献   

9.
Conformational and dynamic properties of the anticodon loop of yeast tRNAPhe were investigated by analyzing the time resolved fluorescence of wybutine serving as a local structural probe adjacent to the anticodon GmAA on its 3 side. The influence of Mg2+, important for stabilizing the tertiary structure of tRNA, and of the complementary anticodon s2UUC of E. coli tRNA 2 Glu were investigated.Fluorescence lifetimes and anisotropies were measured with ps time resolution using time correlated single photon counting and a mode locked synchronously pumped and frequency doubled dye laser as excitation source. From the analysis of lifetimes () and rotational relaxation times ( R ) we conclude that wybutine occurs in various structural states: (i) one stacked conformation where the base has no free mobility and the only rotational motion reflects the mobility of the whole tRNA molecule (=6 ns, R =19 ns), (ii) an unstacked conformation where the base can freely rotate (=100 ps, R = 370 ps) and (iii) an intermediary state (=2 ns, R = 1.6 ns).Under biological conditions, i. e. in the presence of Mg2+ and neutral salts, wybutine is found in a stacked and immobile state which is consistent with the crystallographic picture. In the presence of the complementary codon however, as exemplified by the E. coli-tRNA 2 Glu anticodon, our analysis indicates that the codon-anticodon complex exists in an equilibrium of structural states with different rotational mobility of wybutine. The conformation with wybutine freely mobile is the predominant one and suggests that this conformation of the codon-anticodon structure differs from the canonical 3–5 stack.  相似文献   

10.
Quantification of the time course and amplitude of endplate currents (EPC) was made with respect to dispersion of quanta secretion and to changes in the exponential decay of miniature endplate currents (mepc). The relationship between RPC amplitude and mepc follows a double-exponential curve with 1= 0.3 ms and 2 = 6 ms. If the amplitude of fully synchronised EPC is taken as 100%, then the loss of EPC amplitude is already 42% with physiological parameters of dispersion (the half-rise and decay constant of distribution of secretion probability = 0.5 ms, mepc =1 ms). This loss is even more substantial if secretion is more dispersed or miniature endplate currents decay faster. Correspondence to: F. Vyskocil  相似文献   

11.
Summary Dynamics of the backbone and some side chains of apo-neocarzinostatin, a 10.7 kDa carrier protein, have been studied from 13C relaxation rates R1, R2 and steady-state 13C-{1H} NOEs, measured at natural abundance. Relaxation data were obtained for 79 nonoverlapping C resonances and for 11 threonine C single resonances. Except for three C relaxation rates, all data were analysed from a simple two-parameter spectral density function using the model-free approach of Lipari and Szabo. The corresponding C–H fragments exhibit fast (e < 40 ps) restricted libration motions (S2=0.73 to 0.95). Global examination of the microdynamical parameters S2 and e along the amino acid sequence gives no immediate correlation with structural elements. However, different trends for the three loops involved in the binding site are revealed. The -ribbon comprising residues 37 to 47 is spatially restricted, with relatively large e values in its hairpin region. The other -ribbon (residues 72 to 87) and the large disordered loop ranging between residues 97–107 experience small-amplitude motions on a much faster (picosecond) time scale. The two N-terminal residues, Ala1 and Ala2, and the C-terminal residue Asn113, exhibit an additional slow motion on a subnanosecond time scale (400–500 ps). Similarly, the relaxation data for eight threonine side-chain C must be interpreted in terms of a three-parameter spectral density function. They exhibit slower motions, on the nanosecond time scale (500–3000 ps). Three threonine (Thr65, Thr68, Thr81) side chains do not display a slow component, but an exchange contribution to the observed transverse relaxation rate R2 could not be excluded at these sites. The microdynamical parameters (S2, e and R2ex) or (S infslow sup2 , S inffast sup2 and slow) were obtained from a straightforward solution of the equations describing the relaxation data. They were calculated assuming an overall isotropic rotational correlation time e for the protein of 5.7 ns, determined using standard procedures from R2/R1 ratios. However, it is shown that the product (1–S2e is nearly independent of e for residues not exhibiting slow motions on the nanosecond time scale. In addition, this parameter very closely follows the heteronuclear NOEs, which therefore could be good indices for local fast motions on the picosecond time scale.  相似文献   

12.
Summary The kinetics of light-driven proton transport by bacteriorhodopsin has been studied in a model system consisting of a planar lipid bilayer membrane to which purple membrane fragments have been attached. After excitation with a 10-nsec laser flash a fast negative current-transient occurs, followed by a positive transient which decays to zero. The time course of the photocurrent may be represented by a sum of four exponentials with time constants 1= 1.2sec, 2= 17sec, 4= 57sec, 1= 950sec (at 25°C). In a D2O medium 2 and 3 are increased by a factor of 2.6 and 2.9, respectively, whereas 1 remains unaffected. The observed components of the photocurrent can be correlated to photochemical reaction steps inferred from flash-photometric experiments on the basis of the observed time constants, the activation energies, and the effects of pH and D2O. From the photocurrent signals information may be obtained on the magnitude of the charge displacement associated with the elementary transitions of the bacteriorhodopsin molecule.  相似文献   

13.
Artificial neural nets constructed of dicrete populations of 200–1000 formal neurons have been studied through computer simulation. Among the basic assumptions of operation of these nets are the following: a) Each neuron fires at times which are integral multiples of the synaptic delay . b) It produces the appropriate PSP's after . c) All the neurons have the same refractory period and d) temporal summation occurs without decrement, for a period less than the synaptic delay. The nets were specified by a number of parameters: fraction of inhibitory neurons in the population, average number of connections to each cell, threshold for cell firing. These parameters did not determine the detailed microscopical structures of nets which was established separately on a random basis.For the range of the parameters considered in this study it was found that neural nets are capable of supporting self-maintaining activity in the form of cycling modes, characterized by a fixed period. The period of the cycles can be altered by a steady, non-cycling external input to the net. Evidence is presented that the cycling modes depend upon the statistical parameters of the net and the stimulus characteristics rather than on the detailed structure of the net. These results suggest that non-structured nerve nets may respond in specific manner to specific stimuli.

Glossary

Parameters of Neural Net Model Synaptic delay - A Total number of neurons in the netlet - h Fraction of inhibitory neurons in the netlet (in % of total number of neurons) - + Average number of axon branches emanating from anexcitatory neuron - Average number of axon branches emanating from an inhibitory neuron - k + Average EPSP produced by an excitatory neuron in arbitrary units of amplitude - k Average IPSP produced by an inhibitory neuron in arbitrary units of amplitude - Firing threshold of neurons in the netlet - The minimum number of ESPS's necessary to trigger a neuron in the absence of inhibitory inputs - The minimum number of ESPS's necessary to trigger a neuron in the presence of inhibitory inputs. Dynamic Parameters of the Model n An integer giving the number of elapsed synaptic delays (i.e. elapsed time) - n The activity; i.e. the fraction of active neurons in the netlet at t=n (the actual number of active cells is given by nA) - n={in} State vector of single netlet at time n This research has been supported by NIH grants NS-8012 and NS-8498, and NSF grant GB-30498. Computation assistance was provoded by the Health Sciences Computing Facility, UCLA, sponsored by NIH Special Research Resources grant RR-3.  相似文献   

14.
Summary We have used magnetic resonance spectroscopy, both ESR and13C spin relaxation, to measure translational and rotational mobilities and partition coefficients of small nitroxide solutes in dipalmitoyl lecithin liposomes. Above the bilayer transition temperature,T c, the bilayer interior is quite fluid, as determined from the solutes' rapid rotational and moderately rapid translational motion; the rotational and translational viscosities within the bilayer are R <1cP and =6–10cP, respectively. and R are independent of molecular size for all solutes studied, but all were small compared to the size of the phospholipids. , and probably R , are relatively independent of temperature aboveT c, but both increase very sharply as temperature is lowered belowT c; at 32°C, R increases to 6cP and is greater than 1000 cP. Anisotropy of rotational motion increases gradually as temperature is lowered toT c, and changes little belowT c; anisotropy of translational motion was not investigated.13C nuclear spin relaxation measurements indicate that translational motion of nitroxide solutes is more rapid in the center of the bilayer than near the polar interface. It takes at least 100 nsec for a solute molecule to cross the bilayer/water interface. We estimate a lower limit of 2 sec/cm for the interfacial resistance to solute diffusion; this result indicates that interfacial resistance dominates permeation across the membrane. The relative solubility, or partition coefficient, is a strong function of solute structure, and decreases abruptly on cooling through the transition temperature. From the partition coefficient and its temperature dependence we calculate the free energy, enthalpy, and entropy of partition. Effects of cholesterol on partition and diffusion coefficients are compatible with the interpretation that bilayers containing cholesterol consist of two phases.  相似文献   

15.
Summary The time course of binding of the fluorescent stilbene anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate), to band 3 can be measured by the stopped-flow method. We have previously used the reaction time constant, DBDS, to obtain the kinetic constants for binding and, thus, to report on the conformational state of the band 3 binding site. To validate the method, we have now shown that the ID50 (0.3±0.1 m) for H2-DIDS (4,4-diisothiocyano-2,2-dihydrostilbene disulfonate) inhibition of DBDS is virtually the same as the ID50 (0.47±0.04 m) for H2-DIDS inhibition of red cell Cl flux, thus relating DBDS directly to band 3 anion exchange. The specific glucose transport inhibitor, cytochalasin B, causes significant changes in DBDS, which can be reversed with intracellular, but not extracellular,d-glucose. ID50 for cytochalasin B modulation of DBDS is 0.1±0.2 m in good agreement withK D =0.06±0.005 m for cytochalasin B binding to the glucose transport protein. These experiments suggest that the glucose transport protein is either adjacent to band 3, or linked to it through a mechanism, which can transmit conformational information. Ouabain (0.1 m), the specific inhibitor of red cell Na+,K+-ATPase, increases red cell Cl exchange flux in red cells by a factor of about two. This interaction indicates that the Na+,K+-ATPase, like the glucose transport protein, is either in contact with, or closely linked to, band 3. These results would be consistent with a transport proteincomplex, centered on band 3, and responsible for the entire transport process, not only the provision of metabolic energy, but also the actual carriage of the cations and anions themselves.  相似文献   

16.
The effective diffusivity of glucose in porous glass beads was determined using a transient method. Predictions for the intraparticle and surface concentrations were made by an analytical solution of the mass balance. The value of the diffusivity was expected to be lower than the value of the corresponding diffusion coefficient in water, but the opposite was observed. This effect results from intraparticle fluid flow, leading to high values of the apparent effective glucose diffusivity. To measure diffusion only and to prevent any internal convection during the diffusion experiment, the pores of the porous glass beads were filled with Ca-alginate gel. For these glass beads (internal porosity, , equal to 0.56), we found an effective glucose diffusivity of 2.2×10–10 m2/s at 30°C. Using the relationship to effective intraparticle diffusivity (Deff)=effective diffusivity in 1% Ca-alginate beads (Dgel) / (with the tortuosity factor) this gives =1.7. For known and measuring by the method described, the Deff can be calculated for other porous materials or diffusing substances. Knowledge of the exact value of the effective diffusivity is a necessity in bioreactor modelling and was demonstrated by prediction of the residence time distribution profiles in a packed-bed bioreactor containing immobilized yeast cells.  相似文献   

17.
Evoked and spontaneous end-plate currents (EPC) were studied in normal voltage-clamped frog sartorius muscle fibers and 2 weeks after application of colchicine to the nerve innervating the muscle to block axoplasmic transport in its fibers. Application of colchicine was found to reduce the rate of rise and to prolong decay of EPC without affecting the amplitude of the EPC and miniature EPC, the quantum composition of EPC, and the frequency of miniature EPC. The histogram of distribution of the time constant () of EPC decay under normal conditions follows the normal law, but after application of colchicine to the nerve it is shifted to the right, with separation of two modes (1 and 2). Three types of synapses can be distinguished from the character of EPC decay: monoexponential decay with 1 (44%), biexponential decay with 1 and 2 (39%), and monoexponential decay with 2 (19%). An increase in of EPC decay is accompanied by strengthening of the dependence of this process on the clamping voltage. The current-voltage characteristic and reversal potential of EPC are unchanged. It is suggested that the change in character of EPC decay after application of colchicine to the motor nerve is due to the appearance of acetylcholine-activated ionic channels in the muscle membrane with a longer duration of the open state and with potential-dependence of the open state similar to that taking place after muscle denervation.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 17, No. 2, pp. 204–211, March–April, 1985.  相似文献   

18.
Summary (H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials ( 1 -1 400 sec–1, 2 -1 100 sec–1, 3 -1 10 sec–1; T = 300 K, pH 6, MgCl2 3 mm, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: 2 corresponds to ATP binding and exchange with caged ATP. 1 describes the phosphorylation reaction E1 · ATP E1P. The third, slowest time constant 3 is tentatively assigned to the E1P E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K E1H equilibrium is influenced by potassium with an apparent K 0.5 of 3 mm and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.The authors wish to thank Dr. E. Grell and Mr. G. Schimmack. MPI Frankfurt, for synthesizing caged ATP, Mrs. S. Meister, Hoechst AG Frankfurt, for valuable help to prepare the (H,K)-ATPase, and Dr. W. Haase, MPI Frankfurt, for electron microscope pictures. (H,K)-ATPase for preliminary experiments was provided by Dr. W. Beil, Medizinische Hochschule Hannover, Dr. H. Swarts, University of Nijmegen, and Dr. G. Metzger, Hoechst AG Frankfurt. The work was supported by the Deutsche Forschungsgemeinschaft (SFB 169).  相似文献   

19.
Synopsis Length-frequency data suggest Nile perch, Lates niloticus, from the Nyanza Gulf grew to a total length of 9 cm by age 118 days and 23 cm by age 287 days. A modified von Bertalanffy growth curve t = 1.35·L(1-e–K(t-t o)) with the parameters L = 93.1, K = 0.272 and to = 0.046, is suggested to describe growth up to 5 years of age and the relationship t = 1.35·(31.96 + 7.681t) for fish aged 6 years and above. Length-weight relationships were = 0.0234·-gt2.74 for fish between 7 and 15.9 cm total length, = 0.0151·2.94 for fish between 16 and 45.9 cm total length, and = 0.0023·3.44 for fish between 46 and 120 cm total length. Male Nile perch first matured between 50 and 55 cm total length when they were probably 2 years old; female Nile perch first matured between 80 and 85 cm total length when they were probably 4 years old. Small males were common, large males were rare, with the reverse holding for females. Sex change, from male to female, is a possible explanation for this size dimorphism.  相似文献   

20.
The residual motion of spin labels bound to cysteine 93 and to lysines of methemoglobin has been studied by electron paramagnetic resonance spectroscopy. To separate the influences of the solvent and the protein environment of the label fluctuations, the correlation times, , were analyzed as a function of temperature for fixed solvent viscosities, . Results show that over a wide range of viscosity the dependence of on may be empirically described by a power law k . The exponent k depends strongly on the location of the label on the protein surface. If one regards the spin labels as artificial amino acid side chains, characteristic values of correlation times and amplitudes of the rotational motion at the surface can be given. For =1 cP and T=297 K the correlation time of the labels bound to lysines is found to be =9 · 10–10 s and the rotational diffusion is nearly isotropic. The spin label bound to cysteine 93 occupies a protein pocket, its rotational motion is therefore restricted. The correlation time of the label motion within a limited motion cone of semi angle =30° ± 3° is found to be =1.3 · 10–9 s for =1 cP and T=297 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号