首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

2.
A novel aerobic mechanism of 2-aminobenzoate metabolism was proposed in a denitrifying Pseudomonas species. 2-Aminobenzoic acid is activated in a coenzyme-A-ligase reaction to 2-aminobenzoyl-CoA and this intermediate is dearomatized by a unique enzyme, tentatively named 2-aminobenzoyl-CoA monooxygenase/reductase. This paper describes the purification and some molecular, kinetic and spectral properties of this flavoenzyme which catalyzes the hydroxylation and reduction of 2-aminobenzoyl-CoA to an unknown non-aromatic compound. 2-Aminobenzoyl-CoA monooxygenase/reductase was purified 25-fold to a specific activity of 25 mumol.min-1.mg-1 protein using ammonium sulfate precipitation, DEAE-cellulose anion-exchange, hydroxylapatite and Mono Q FPLC anion-exchange chromatography. Superose 6 gel filtration for estimation of molecular mass resulted in one symmetrical protein peak corresponding to a molecular mass of 170 kDa. Several experimental data suggest that the protein is probably an alpha 2 dimer; however, it may exist in three dimeric forms, alpha alpha, alpha alpha' and alpha' alpha', where alpha' may be a subunit with a different conformation. Approximately 2 mol noncovalently bound FAD/mol enzyme was found, which in the absence of O2 was reduced by NADH. The enzyme was specific for the substrates 2-aminobenzoyl-CoA (Km less than or equal to 25 microM) and O2 (Km less than or equal to 5 microM), but less specific for the reduced pyridine nucleotides NADH (Km = 42 microM) or NADPH [Km = 500 microM; Vmax (NADH)/Vmax (NADPH) = 1.7:1]. The turnover number was 4250 min-1. The enzyme also reduced N-ethylmaleimide and maleimide with NAD(P)H. The substrate, the products and the reaction stoichiometry are described in two following papers.  相似文献   

3.
In the beta-proteobacterium Azoarcus evansii, the aerobic metabolism of 2-aminobenzoate (anthranilate), phenylacetate, and benzoate proceeds via three unprecedented pathways. The pathways have in common that all three substrates are initially activated to coenzyme A (CoA) thioesters and further processed in this form. The two initial steps of 2-aminobenzoate metabolism are catalyzed by a 2-aminobenzoate-CoA ligase forming 2-aminobenzoyl-CoA and by a 2-aminobenzoyl-CoA monooxygenase/reductase (ACMR) forming 2-amino-5-oxo-cyclohex-1-ene-1-carbonyl-CoA. Eight genes possibly involved in this pathway, including the genes encoding 2-aminobenzoate-CoA ligase and ACMR, were detected, cloned, and sequenced. The sequence of the ACMR gene showed that this enzyme is an 87-kDa fusion protein of two flavoproteins, a monooxygenase (similar to salicylate monooxygenase) and a reductase (similar to old yellow enzyme). Besides the genes for the initial two enzymes, genes for three enzymes of a beta-oxidation pathway were found. A substrate binding protein of an ABC transport system, a MarR-like regulator, and a putative translation inhibitor protein were also encoded by the gene cluster. The data suggest that, after monooxygenation/reduction of 2-aminobenzoyl-CoA, the nonaromatic CoA thioester intermediate is metabolized further by beta-oxidation. This implies that all subsequent intermediates are CoA thioesters and that the alicyclic carbon ring is not cleaved oxygenolytically. Surprisingly, the cluster of eight genes, which form an operon, is duplicated. The two copies differ only marginally within the coding regions but differ substantially in the respective intergenic regions. Both copies of the genes are coordinately expressed in cells grown aerobically on 2-aminobenzoate.  相似文献   

4.
Methane monooxygenase has been purified from the Type II methanotroph Methylosinus trichosporium OB3b. As observed for methane monooxygenase isolated from Type I methanotrophs, three protein components are required: a 39.7-kDa NADH reductase containing 1 mol each of FAD and a [2Fe-2S] cluster, a 15.8-kDa protein factor termed component B that contains no metals or cofactors, and a 245-kDa hydroxylase which appears to contain an oxo- or hydroxo-bridged binuclear iron cluster. Through the use of stabilizing reagents, the hydroxylase is obtained in high yield and exhibits a specific activity 8-25-fold greater than reported for previous preparations. The component B and reductase exhibit 1.5- and 4-fold greater specific activity, respectively. Quantitation of the hydroxylase oxo-bridged cluster using EPR and M?ssbauer spectroscopies reveals that the highest specific activity preparations (approximately 1700 nmol/min/mg) contain approximately 2 clusters/mol. In contrast, hydroxylase preparations exhibiting a wide range of specific activities below 500 nmol/min/mg contain approximately 1 cluster/mol on average. Efficient turnover coupled to NADH oxidation requires all three protein components. However, both alkanes and alkenes are hydroxylated by the chemically reduced hydroxylase under single turnover conditions in the absence of component B and the reductase. Neither of these components catalyzes hydroxylation individually nor do they significantly affect the yield of hydroxylated product from the chemically reduced hydroxylase. Hydroxylase reduced only to the mixed valent [Fe(II).Fe(III)] state is unreactive toward O2 and yields little hydroxylated product on single turnover. This suggests that the catalytically active species is the fully reduced form. The data presented here provide the first evidence based on catalysis that the site of the monooxygenation reaction is located on the hydroxylase. It thus appears likely that the oxo-bridged iron cluster is capable of catalyzing oxygenase reactions without the intervention of other cofactors. This is a novel function for this type of cluster and implies a new mechanism for the generation of highly reactive oxygen capable of insertion into unactivated carbon-hydrogen bonds.  相似文献   

5.
The growth of a denitrifying Pseudomonas strain on benzoic acid and 2-aminobenzoic acid (anthranilic acid) has been studied. The organism grew aerobically on benzoate, 2-aminobenzoate, and gentisate, but not on catechol or protocatechuic acid. These and other findings suggest that aerobic degradation of benzoic acid was via gentisic acid. Under completely anaerobic conditions in the presence of nitrate, benzoate and 2-aminobenzoate (5 mM each) were oxidized to CO2 with the concurrent reduction of NO 3 - to NO 2 - . Only after complete NO 3 - consumption was NO 2 - reduced to N2. Cells contained a NADP-specific 2-oxoglutaate dehydrogenase, in contrast to a NAD-specific pyruvate dehydrogenase. During anaerobic metabolism of [carboxyl-14C]benzoic acid, 16% of the label of metabolized benzoic acid was incorporated into cell material; this excludes intermediary decarboxylation during anaerobic metabolism. Extracts catalysed the activation of benzoic acid and a variety of its derivatives to the respective aryl-coenzyme A thioesters, ATP being cleaved to AMP and PPi; two synthetase activites were present. Extracts from 2-aminobenzoate-grown cells catalyzed a NADH-dependent reduction of 2-aminobenzoyl-CoA (100 nmol·min-1·mg-1 cell protein) to an unidentified CoA thioester, with a stoichiometric release of NH3 and a stoichiometry of 3 mol NADH oxidized per mol 2-aminobenzyol-CoA reduced when tested under aerobic conditions. The 2-aminobenzoyl-CoA reductase activity was lacking in anaerobic benzoate-grown cells and in aerobic cells. This is taken as evidence that 2-aminobenzoyl-CoA reductase is a key enzyme in a novel reductive pathway of anaerobic 2-aminobenzoic acid metabolism.Dedicated to Prof. Charles W. Evans  相似文献   

6.
Pseudomonas KB 740 degrades 2-aminobenzoate aerobically via a chimeric pathway which combines characteristics of anaerobic and aerobic aromatic metabolism. Atypically, 2-aminobenzoyl-CoA is an intermediate, and the activated aromatic acid is not only hydroxylated but also reduced to an alicyclic compound in a single step. The bacterial strain possesses a small plasmid, pKB 740, which carries all essential information of this new pathway. Its total nucleotide sequence was determined. It consists of 8280 bp and contains the genes for the two initial enzymes of the pathway; 2-aminobenzoate-CoA ligase catalyzes the activation of the aromatic acid, and the flavoenzyme 2-aminobenzoyl-CoA monooxygenase/reductase catalyzes the hydroxylation (monooxygenase activity) and subsequent reduction (reductase activity) of the aromatic ring of 2-aminobenzoyl-CoA. Furthermore, five open reading frames (ORF) possibly coding for polypeptides are on the plasmid. Putative promoter sequences were found for two of the ORF. A nucleotide sequence able to form a possible termination loop was located downstream of the gene for 2-aminobenzoyl-CoA monooxygenase/reductase. This gene consists of 2190 bases. The deduced amino acid sequence of the protein (730 residues; calculated molecular mass of the native 729-residue protein, 83,559 Da) contains a consensus sequence for an FAD-binding site at the N-terminus and a possible NAD(P)H-binding site approximately 150 amino acid residues apart from the N-terminus. The monooxygenase/reductase shows low sequence similarity to the flavoprotein salicylate hydroxylase. Functional and evolutionary aspects of this work are discussed.  相似文献   

7.
Alkene monooxygenase, a multicomponent enzyme system which catalyzes the epoxidation of short-chain alkenes, is induced in Mycobacterium strain E3 when it is grown on ethene. We purified the NADH reductase component of this enzyme system to homogeneity. Recovery of the enzyme was 19%, with a purification factor of 920-fold. The enzyme is a monomer with a molecular mass of 56 kDa as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It is yellow-red with absorption maxima at 384, 410, and 460 nm. Flavin adenine dinucleotide (FAD) was identified as a prosthetic group at a FAD-protein ratio of 1:1. Tween 80 prevented irreversible dissociation of FAD from the enzyme during chromatographic purification steps. Colorimetric analysis revealed 2 mol each of iron and acid-labile sulfide, indicating the presence of a [2Fe-2S] cluster. The presence of this cluster was confirmed by electron paramagnetic resonance spectroscopy (g values at 2.011, 1.921, and 1.876). Anaerobic reduction of the reductase by NADH resulted in formation of a flavin semiquinone.  相似文献   

8.
In a previous report we have described some properties of a novel flavoenzyme from a denitrifying Pseudomonas species which catalyzes the oxygen- and NAD(P)H-dependent conversion of 2-aminobenzoyl-CoA [Buder, R., Ziegler, K., Fuchs, G., Langkau, B. & Ghisla, S. (1989) Eur. J. Biochem. 185, 637-634]. In this paper, we report on the identification of the three products formed from 2-aminobenzoyl-CoA in this reaction. The spectroscopic data and the chemical properties of these compounds and those of their degradation products are compatible with the structures of 2-amino-5-hydroxybenzoyl-CoA, 2-amino-5-hydroxycyclohex-1-enecarboxyl-CoA and of 2-amino-5-oxocyclohex-1-enecarboxyl-CoA. The latter is the main product and was found to be rather unstable since it hydrolyzes and decarboxylates readily at pH less than 5. Ammonia is released from the decarboxylation product in the neutral pH range to yield 1,4-cyclohexanedione. Conditions were optimized such that the CoA thioester of 2-amino-5-hydroxybenzoate is the product obtained at greater than 98% yield. 2-amino-5-hydroxycyclohex-1-enecarboxyl-CoA is the product which is formed when the mixture of the reaction products is treated with sodium borohydride before separation.  相似文献   

9.
Metylomonassp.GYJ3菌的甲烷单加氧酶(MMO)粗酶提取液经DEAE-SepharoseCL-6B阴离子交换层析、SephadexG-100凝胶过滤层析和DEAE-TSKgelHPLC分离纯化出MMO还原酶组分.经HPLC分析,纯度大于95%,纯化倍数为4.4,加入至MMO羟基化酶和调节蛋白B的体系中表现比活为228nmol环氧丙烷每分钟毫克蛋白.SDS-PAGE电泳表明还原酶由一种亚基组成,分子量42kD.ICP-AES测定还原酶的Fe含量为1.83molFe每mol蛋白.UV-Vis光谱表明还原酶除280nm蛋白质特征峰外在460nm有最大吸收峰,且A280nm/A460nm为2.50,与其它黄素一铁硫蛋白相似,推测还原酶可能含一个FAD辅基和Fe2S2中心.在厌氧条件下,还原酶能够和NADH作用,UV-Vis光谱分析表明还原酶460nm处特征吸收峰消失,说明在MMO催化过程中还原酶接受NADH的电子.DEAE-SepharoseCL-6B阴离子交换层析分离出调节蛋白B,部分纯化的调节蛋白B的分子量大约在20kD,它能够提高MMO比活性40倍,MMO还原酶和调节蛋白B单独存在时不具有MMO  相似文献   

10.
A spectrophotometric study of the reduction of the Fe3+ microperoxidase-8-aniline (Fe3+-MP-8-An) complex has been carried out. Addition of NADH to a solution of Fe3+-MP-8-An under strictly anerobic conditions results in the formation of a species with lambda max = 414 nm (Fe3+-MP-8-An lambda max 407 nm). The kinetics of formation of this species show an induction period (tau) which follows saturation kinetics with respect to [aniline] with Km(app) = 2.2 x 10(-3) mol dm-3, i.e., close to that obtained in the preceding paper from O2 consumption kinetics mediated by MP-8. Addition of an anerobic solution of the NADH reduced MP-8-An complex, to a saturated O2 solution at pH 12 in the presence of 0.5 mM NADH and aniline 10 mM results in the virtual elimination of the induction phase, which has previously characterized O2 consumption kinetics in ferriprotoporphyrin IX oxygen activation systems. The Arrhenius activation energy for the reduction of the Fe3+-MP-8-An complex is close to that observed for the first reductive step in the cyt P-450 O2 activation cycle. Anerobic reduction of Fe3+-MP-8 by sodium dithionite in 20% MeOH/Aq at pH 8 followed by anerobic titration of the Fe2+-MP-8 (lambda max 420.5 nm) with aniline at pH 12 gives rise to a species lambda max 415 with KD for the process = 4.4 x 10(-3) mol dm-3 (+/- 1.2 x 10(-3) mol dm-3).  相似文献   

11.
C Lochmeyer  J Koch    G Fuchs 《Journal of bacteriology》1992,174(11):3621-3628
The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.  相似文献   

12.
Products formed from the lactoperoxidase (LPO) catalyzed oxidation of thiocyanate ion (SCN-) with hydrogen peroxide (H2O2) have been studied by 13C-NMR at pH 6 and pH 7. Ultimate formation of hypothiocyanite ion (OSCN-) as the major product correlates well with the known optical studies. The oxidation rate of SCN- appears to be greater at pH < or = 6.0. At [H2O2]/[SCN-] ratios of < or = 0.5, OSCN- is not formed immediately, but an unidentified intermediate is produced. At [H2O2]/[SCN-] > 0.5, SCN- appears to be directly oxidized to OSCN-. Once formed, OSCN- slowly degrades over a period of days to carbon dioxide (CO2), bicarbonate ion (HCO3-), and hydrogen cyanide (HCN). An additional, previously unrecognized product also appears after formation of OSCN-. On the basis of carbon-13 chemical shift information this new species is suggested to result from rearrangement of OSCN- to yield the thiooxime isomer, SCNO- or SCNOH.  相似文献   

13.
The biosynthesis of C-terminal alpha-amidated peptides from their corresponding C-terminal glycine-extended precursors is catalyzed by peptidylglycine alpha-amidating enzyme (alpha-AE) in a reaction that requires copper, ascorbate, and molecular oxygen. Using bifunctional type A rat alpha-AE, we have shown that O2 is the source of the alpha-carbonyl oxygen of pyruvate produced during the amidation of dansyl-Tyr-Val-[alpha-13C]-D-Ala, as demonstrated by the 18O isotopic shift in the 13C NMR spectrum of [alpha-13C]lactate generated from [alpha-13C]pyruvate in the presence of lactate dehydrogenase and NADH. In addition, one-to-one stoichiometries have been determined for glyoxylate formed/dansyl-Tyr-Val-Gly consumed, pyruvate formed/dansyl-Tyr-Val-D-Ala consumed, dansyl-Tyr-Val-NH2 formed/ascorbate oxidized, and dansyl-Tyr-Val-NH2 formed/O2 consumed. Quantitative coupling of NADH oxidation to dansyl-Tyr-Val-NH2 production using Neurospora crassa semidehydroascorbate reductase showed that two one-electron reductions by ascorbate occurred per alpha-AE turnover. The stoichiometry of approximately 1.0 dansyl-Tyr-Val-NH2 produced/ascorbate oxidized observed in the absence of a semidehydroascorbate trap resulted from the disproportionation of two semidehydroascorbate molecules to ascorbate and dehydroascorbate.  相似文献   

14.
15.
Unidirectional fluxes from ATP to phosphocreatine (PCr) catalyzed by MM-isoenzyme of creatine kinase (CK) were measured by using 31P-NMR saturation transfer technique and by means of radioactively labeled [gamma-32P]ATP. At 30-37 degrees C and pH 7.4 in a wide range of [PCr]/[creatine] ([PCr]/[Cr]) ratios (0.2 to 3.0) both of these methods gave similar results, thus showing that magnetization (saturation) transfer allows to determine fluxes close to real ones under "physiological" conditions. However, at [PCr]/[Cr] ratio higher than 5 ([ADP] less than 30 microM) or at decreased temperatures (7-15 degrees C, [PCr]/[Cr] approximately 1) fluxes determined by saturation transfer substantially exceeded those measured with the radioactive label. These data imply that under "physiological" conditions phosphoryl group transfer is actually rate-determining step of the CK reaction. On the contrary, at high [PCr]/[Cr] values or at low temperature the control step could be shifted from the phosphoryl group transfer or distributed among other steps of the reaction.  相似文献   

16.
The oxidation of tetrahydropterin with ferri-cytochrome c was studied using a tetrahydropterin-generating system composed of dihydropteridine reductase [EC 1.6.99.7] and NADH. Under aerobic conditions, 1.5 to 1.8 mol of cytochrome c was reduced per mol of NADH, whereas 2 mol of cytochrome c was reduced under anaerobic conditions. When superoxide dismutase [EC 1.15.1.1] was added to the system under aerobic conditions, only 1 mol of cytochrome c was reduced per mol of NADH, while the pterin oxidation was scarcely affected. Based on these results, we propose that the oxidation of tetrahydropterin to quinonoid dihydropterin proceeds via two steps: tetrahydropterin is first oxidized by ferri-cytochrome c to give a pterin intermediate, which has lost one electron, then in turn this reduces O2 to form O2-.  相似文献   

17.
Lucigenin-dependent chemiluminescence together with 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1) reduction can be detected following addition of NADH to many cell types, including human sperm suspensions. Although many reports suggest that such a phenomenon is due to reactive oxygen species production, other oxygen detecting metabolite probes, such as MCLA and luminol, do not produce a chemiluminescent signal in this model system. The enzyme responsible for NADH-dependent lucigenin chemiluminescence was purified and identified as cytochrome-b5 reductase. In support of this concept, COS-7 cells overexpressing cytochrome-b5 reductase displayed at least a 3-fold increase in the previously mentioned activity compared with mock-transfected cells. Fractions containing cytochrome-b5 reductase were capable of inducing both lucigenin-dependent chemiluminescence and WST-1 reduction. Oxygen radicals clearly did not mediate the cytochrome b5-mediated activation of these probes in vitro since neither luminol nor MCLA gave a chemiluminescence response in the presence of the enzyme and the cofactor NADH. These results emphasize the importance of the direct NADH-dependent reduction of these putative superoxide-sensitive probes by cytochrome-b5 reductase even though this enzyme does not, on its own accord, produce reactive oxygen species.  相似文献   

18.
Soluble methane monooxygenase (sMMO) catalyzes the hydroxylation of methane by dioxygen to afford methanol and water, the first step of carbon assimilation in methanotrophic bacteria. This enzyme comprises three protein components: a hydroxylase (MMOH) that contains a dinuclear nonheme iron active site; a reductase (MMOR) that facilitates electron transfer from NADH to the diiron site of MMOH; and a coupling protein (MMOB). MMOR uses a noncovalently bound FAD cofactor and a [2Fe-2S] cluster to mediate electron transfer. The gene encoding MMOR was cloned from Methylococcus capsulatus (Bath) and expressed in Escherichia coli in high yield. Purified recombinant MMOR was indistinguishable from the native protein in all aspects examined, including activity, mass, cofactor content, and EPR spectrum of the [2Fe-2S] cluster. Redox potentials for the FAD and [2Fe-2S] cofactors, determined by reductive titrations in the presence of indicator dyes, are FAD(ox/sq), -176 +/- 7 mV; FAD(sq/hq), -266 +/- 15 mV; and [2Fe-2S](ox/red), -209 +/- 14 mV. The midpoint potentials of MMOR are not altered by the addition of MMOH, MMOB, or both MMOH and MMOB. The reaction of MMOR with NADH was investigated by stopped-flow UV-visible spectroscopy, and the kinetic and spectral properties of intermediates are described. The effects of pH on the redox properties of MMOR are described and exploited in pH jump kinetic studies to measure the rate constant of 130 +/- 17 s(-)(1) for electron transfer between the FAD and [2Fe-2S] cofactors in two-electron-reduced MMOR. The thermodynamic and kinetic parameters determined significantly extend our understanding of the sMMO system.  相似文献   

19.
Unidirectional fluxes from ATP to phosphocreatine, catalyzed by the MM isoenzyme of creatine kinase, were measured by both the 31P-NMR saturation transfer technique and radioisotope tracer ([gamma-32P]ATP) method. It was found that at 30-37 degrees C and pH 7.4, over a wide range of [phosphocreatine]/[creatine] (from 0.2 to 5.0) ratios, both methods gave the same results, showing that magnetization transfer allows determination of real fluxes under 'physiological' conditions. However, at [PCr]/[Cr] ratios higher than 5 ([ADP]free less than 30 microM) or at lower temperatures (t less than 15 degrees C, [PCr]/[Cr] approximately 1), the fluxes assessed by saturation transfer were somewhat faster than those detected by the radioisotope tracer method. These data imply that under physiological conditions phosphoryl group transfer is actually the rate-determining step of the creatine kinase reaction. In contrast, at high [PCr]/[Cr] ratios or at lower temperatures, control may be shifted from phosphoryl group transfer or distributed among other steps of the reaction.  相似文献   

20.
Pseudomonas sp. strain DNT degrades 2,4-dinitrotoluene (DNT) by a dioxygenase attack at the 4,5 position with concomitant removal of the nitro group to yield 4-methyl-5-nitrocatechol (MNC). Here we describe the mechanism of removal of the nitro group from MNC and subsequent reactions leading to ring fission. Washed suspensions of DNT-grown cells oxidized MNC and 2,4,5-trihydroxytoluene (THT). Extracts prepared from DNT-induced cells catalyzed the disappearance of MNC in the presence of oxygen and NADPH. Partially purified MNC oxygenase oxidized MNC in a reaction requiring 1 mol of NADPH and 1 mol of oxygen per mol of substrate. The enzyme converted MNC to 2-hydroxy-5-methylquinone (HMQ), which was identified by gas chromatography-mass spectrometry. HMQ was also detected transiently in culture fluids of cells grown on DNT. A quinone reductase was partially purified and shown to convert HMQ to THT in a reaction requiring NADH. A partially purified THT oxygenase catalyzed ring fission of THT and accumulation of a compound tentatively identified as 3-hydroxy-5-(1-formylethylidene)-2-furanone. Preliminary results indicate that this compound is an artifact of the isolation procedure and suggest that 2,4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid is the actual ring fission product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号