首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hormonal and phorbol ester pretreatment of pancreatic acinar cells markedly decreases the Ins(1,4,5)P3-induced release of actively stored Ca2+ [Willems, Van Den Broek, Van Os & De Pont (1989) J. Biol. Chem. 264, 9762-9767]. Inhibition occurred at an ambient free Ca2+ concentration of 0.1 microM, suggesting a receptor-mediated increase in Ca2(+)-sensitivity of the Ins(1,4,5)P3-operated Ca2+ channel. To test this hypothesis, the Ca2(+)-dependence of Ins(1,4,5)P3-induced Ca2+ release was investigated. In the presence of 0.2 microM free Ca2+, permeabilized cells accumulated 0.9 nmol of Ca2+/mg of acinar protein in an energy-dependent pool. Uptake into this pool increased 2.2- and 3.3-fold with 1.0 and 2.0 microM free Ca2+ respectively. At 0.2, 1.0 and 2.0 microM free Ca2+, Ins(1,4,5)P3 maximally released 0.53 (56%), 0.90 (44%) and 0.62 (20%) nmol of Ca2+/mg of acinar protein respectively. Corresponding half-maximal stimulatory Ins(1,4,5)P3 concentrations were calculated to be 0.5, 0.6 and 1.4 microM, suggesting that the affinity of Ins(1,4,5)P3 for its receptor decreases beyond 1.0 microM free Ca2+. The possibility that an inhibitory effect of sub-micromolar Ca2+ is being masked by the concomitant increase in size of the releasable store is excluded, since Ca2+ release from cells loaded in the presence of 0.1 or 0.2 microM free Ca2+ and stimulated at higher ambient free Ca2+ was not inhibited below 1.0 microM free Ca2+. At 2.0 and 10.0 microM free Ca2+, Ca2+, Ca2+ release was inhibited by approx. 30% and 75% respectively. The results presented show that hormonal pretreatment does not lead to an increase in Ca2(+)-sensitivity of the release mechanism. Such an increase in Ca2(+)-sensitivity to sub-micromolar Ca2+ is required to explain sub-micromolar oscillatory changes in cytosolic free Ca2+ by a Ca2(+)-dependent negative-feedback mechanism.  相似文献   

2.
Saponin-treated liver cells and a microsomal fraction were used to characterize the mechanism of the Ca2+ release induced by different bile acids. The saponin-treated cells accumulated 0.8-1 nmol/mg of protein of the medium Ca2+ in a nonmitochondrial, high affinity, and inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3)-sensitive Ca2+ pool. Three of five bile acids tested, lithocholate and the conjugates taurolithocholate and taurolithocholate sulfate, released 85% of the Ca2+ pool within 45-60 s and with ED50 from 16 to 28 microM. Ins(1,4,5)P3 released 80% from the same Ca2+ pool with an ED50 of 0.3 microM. The Ca2+-Mg2+-ATPase inhibitor vanadate (1 mM) had no effect on the Ca2+ released by the bile acids and Ins(1,4,5)P3. The Ins(1,4,5)P3-binding antibiotic neomycin (1 mM) and the receptor competitor heparin (16 micrograms/ml) abolished the releasing effect of Ins(1,4,5)P3 but had no effect on the bile acid-mediated Ca2+ release. The 45Ca2+ accumulated by the microsomal fraction (8 nmol of 45Ca2+/mg of protein) was released by the bile acids within 45-90 s and with an ED50 of 17 microM. In contrast, the bile acids had no effect on the Ca2+ permeability of other natural and artificial membranes. The resting 45Ca2+ influx of intact cells (0.45 nmol/mg of protein/min), the 45Ca2+ accumulated by mitochondria (2-13 nmol of 45Ca2+/mg of protein), and the 45Ca2+ trapped in sonicated phosphatidylcholine vesicles (5 mM 45Ca2+) were not altered by the different bile acids. These results suggest that the Ca2+ release initiated by lithocholate and its conjugates results from a direct action on the Ca2+ permeability of the Ins(1,4,5)P3-sensitive pool. It is not mediated by Ins(1,4,5)P3 or via activation of the Ins(1,4,5)P3 receptor, and it is specific for the membrane of the internal pool.  相似文献   

3.
In a permeable neoplastic rat liver epithelial (261B) cell system, inositol 1,3,4,5-tetrakisphosphate--Ins(1,3,4,5)P4--induces sequestration of Ca2+ released by inositol 2,4,5-trisphosphate--Ins(2,4,5)P3; a non-metabolized inositol trisphosphate (InsP3) isomer--and Ca2+ added exogenously in the form of CaCl2. Studies were performed to identify the Ca2+ pool filled after Ins(1,3,4,5)P4 treatment. Both Ins(2,4,5)P3 and inositol 1,4,5-trisphosphate--Ins(1,4,5)P3--dose-dependently release Ca2+ from permeable 261B cells--Ins(1,4,5)P3 having a threefold greater potency--but differ in that Ca2+ released by Ins(1,4,5)P3 is readily sequestered, while the Ca2+ released by Ins(2,4,5)P3 is not. Maximal release of Ca2+ by 6 microM Ins(2,4,5)P3 blocked the action of Ins(1,4,5)P3, demonstrating that these two isomers influence the same intracellular Ca2+ pool through a shared membrane receptor. Addition of 2 microM Ins(2,4,5)P3 to discharge partially the Ca2+ pool reduced the amount of Ca2+ released by a maximal dose of Ins(1,4,5)P3 (2 microM). Ins(1,3,4,5)P4 combined with Ins(2,4,5)P3 produced a Ca2+ release and sequestration response, which replenished the InsP3-sensitive pool as indicated by a recovery of full Ca2+ release by 2 microM Ins(1,4,5)P3. Induction of Ca2+ sequestration by Ins(1,3,4,5)P4 occurred dose-dependently, with a half-maximal response elicited at a dose of 0.9 microM. Further studies of the effect of Ins(1,3,4,5)P4 apart from the influence of Ins(2,4,5)P3 using a model in which the Ca2+ levels are raised by an exogenous addition of CaCl2 showed that Ins(1,4,5)P3 released twice the amount of Ca2+ from the storage pool following Ins(1,3,4,5)P4-induced Ca2+ sequestration. These results demonstrate that the Ca2+ uptake induced by Ins(1,3,4,5)P4 preferentially replenishes the intracellular Ca2+ storage sites regulated by Ins(1,4,5)P3 and Ins(2,4,5)P3.  相似文献   

4.
The effects of plasma membrane depolarization on cytosolic free calcium ([Ca2+]i) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation were investigated in the human promyelocytic cell line HL-60 differentiated with either dimethyl sulfoxide or retinoic acid into neutrophil-like cells. Increases in [Ca2+]i and accumulation of Ins(1,4,5)P3 were triggered by two chemoattractants fMet-Leu-Phe and leukotriene B4. Plasma membrane potential was depolarized by isoosmotic substitution of NaCl with KCl, by the pore-forming ionophore gramicidin D, or by long term treatment with ouabain. Both Ca2+ mobilization from intracellular stores and Ca2+ influx across the plasma membrane were reduced by prior depolarization of plasma membrane potential regardless of the procedure employed to collapse it. Agonist-induced generation of Ins(1,4,5)P3 was also reduced in parallel in pre-depolarized HL-60 cells. The present findings provide further evidence suggesting that plasma membrane potential can be an important modulator of agonist-activated second messenger generation in myelocytic cells.  相似文献   

5.
The sulphydryl reagent thimerosal (50 microM) released Ca2+ from a non-mitochondrial intracellular Ca2+ pool in a dose-dependent manner in permeabilized insulin-secreting RINm5F cells. This release was reversed after addition of the reducing agent dithiothreitol. Ca2+ was released from an Ins(1,4,5)P3-insensitive pool, since release was observed even after depletion of the Ins(1,4,5)P3-sensitive pool by a supramaximal dose of Ins(2,4,5)P3 or thapsigargin. The Ins(1,4,5)P3-sensitive pool remained essentially unaltered by thimerosal. Thimerosal-induced Ca2+ release was potentiated by caffeine. These findings suggest the existence of Ca(2+)-induced Ca2+ release also in insulin-secreting cells.  相似文献   

6.
Permeabilized rat hepatocytes were used to study the effects of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and GTP on Ca2+ uptake and release by ATP-dependent intracellular Ca2+ storage pools. Under conditions where these Ca2+ pools were completely filled, maximal doses of Ins(1,4,5)P3 released only 25-30% of the sequestered Ca2+. The residual Ca2+ was freely releasable with the Ca2+ ionophore ionomycin. Addition of GTP in the absence of Ins(1,4,5)P3 did not cause Ca2+ release and had no effect on the steady-state level of Ca2+ accumulation by intracellular storage pools. However, after a 3-4-min treatment with GTP the size of the Ins(1,4,5)P3-releasable Ca2+ pool was increased by about 2-fold, with a proportional decrease in the residual Ca2+ available for release by ionomycin. In contrast to the situation with freshly permeabilized cells, permeabilized hepatocytes from which cytosolic components had been washed out exhibited direct Ca2+ release in response to GTP addition. The potentiation of Ins(1,4,5)P3-induced Ca2+ release by GTP in permeabilized hepatocytes was concentration-dependent with half-maximal effects at about 5 microM GTP. The dose response to Ins(1,4,5)P3 was not shifted by GTP; instead GTP increased the amount of Ca2+ released at all Ins(1,4,5)P3 concentrations. The effects of GTP were not mimicked by other nucleotides or nonhydrolyzable GTP analogues. In fact, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) inhibited the actions of GTP. However, this inhibition only occurred when GTP gamma S was added prior to GTP, suggesting that the GTP effect is not readily reversible once the cells have been permeabilized. Experiments using vanadate to inhibit the ATP-dependent Ca2+ uptake pump showed that Ins(1,4,5)P3 releases all of the Ca2+ within the Ins(1,4,5)P3-sensitive Ca2+ pool even in the absence of GTP. The increase of Ins(1,4,5)P3-induced Ca2+ release brought about by GTP was also unaffected by vanadate. It is concluded that GTP increases the proportion of the sequestered Ca2+ which is available for release by Ins(1,4,5)P3, either by unmasking latent Ins(1,4,5)P3-sensitive Ca2+ release sites or by allowing direct Ca2+ movement between Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive Ca2+ storage pools.  相似文献   

7.
HL-60 cells possess a 60 kDa Ca2(+)-binding protein that is contained in a discrete subcellular compartment, referred to as calciosomes. Subcellular fractionation studies have suggested that, in HL-60 cells, this intracellular compartment is an Ins(1,4,5)P3-sensitive Ca2+ store. In order to investigate the structural relationship of the 60 kDa Ca2(+)-binding protein of HL-60 cells to other Ca2(+)-binding proteins, we have purified the protein by ammonium sulphate extraction, acid precipitation, and DEAE-cellulose and phenyl-Sepharose column chromatography. The N-terminal sequence of the protein shows 93% identity with rabbit muscle calreticulin, a recently cloned sarcoplasmic reticulum Ca2(+)-binding protein. No amino acid sequence similarity with calsequestrin was found, although the purified protein cross-reacted with anti-calsequestrin antibodies. The calreticulin-related protein of HL-60 cells might play a role as an intravesicular Ca2(+)-binding protein of an Ins(1,4,5)P3-sensitive Ca2+ store.  相似文献   

8.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), an intracellular second messenger produced from the hydrolysis of phosphatidylinositol 4,5-bisphosphate, interacts with cytoplasmic membrane structures to elicit the release of stored Ca2+. Ins(1,4,5)P3-induced Ca2+ mobilization is mediated through high affinity receptor binding sites; however, the biochemical mechanism coupling receptor occupation with Ca2+ channel opening has not been identified. In studies presented here, we examined the effects of naphthalenesulfonamide calmodulin antagonists, W7 and W13, and a new selective antagonist, CGS 9343B, on Ca2+ mobilization stimulated by Ins(1,4,5)P3 in neoplastic rat liver epithelial (261B) cells. Intact fura-2 loaded cells stimulated by thrombin, a physiological agent that causes phosphatidylinositol 4,5-bisphosphate hydrolysis and Ins (1,4,5)P3 release, responded with a rise in cytoplasmic free Ca2+ levels that was dose dependently inhibited by W7(Ki = 25 microM), W13 (Ki = 45 microM), and CGS 9343B (Ki = 110 microM). Intracellular Ca2+ release stimulated by the addition of Ins(1,4,5)P3 directly to electropermeabilized 261B cells was similarly inhibited by pretreatment with anti-calmodulin agents. W7 and CGS 9343B, which potently blocked Ca2+/calmodulin-dependent protein kinase, had no significant effect on protein kinase A or C in dose range required for complete inhibition of Ca2+ mobilization. Ca2+ release channels and Ca2+-ATPase pump activity were also unaffected by calmodulin antagonist treatment. These results indicate that calmodulin is tightly associated with the intracellular membrane mechanism coupling Ins(1,4,5)P3 receptors to Ca2+ release channels  相似文献   

9.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

10.
D-myo-Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) regulates intracellular Ca2+ by mobilizing Ca2+ from a non-mitochondrial store. We have investigated the effects of Ca2+ on the binding of [32P]Ins (1,4,5)P3 to permeabilized rat hepatocytes and a liver plasma membrane-enriched fraction. Increasing the free Ca2+ concentration in the medium from 0.1 nM to 0.7 microM increased the capacity of a high affinity binding component (KD = 2-3 nM) in permeabilized cells by a factor of 10. If the membrane fraction was preincubated at 37 degrees C before binding was measured at 4 degrees C, all of the Ins(1,4,5)P3 receptors were transformed to a low affinity state (KD = 65 +/- 12 nM, Bmax = 3.1 +/- 0.1 fmol/mg, n = 4). When 0.7 microM of Ca2+ was added, the receptors were totally transformed to a high affinity state (KD = 2.8 +/- 0.4 nM, Bmax = 2.7 +/- 0.4 fmol/mg, n = 4). The EC50 of the Ca2(+)-induced interconversion of the Ins(1,4,5)P3 receptor was 140 nM. This Ca2(+)-induced transformation of the Ins(1,4,5)P3 receptor from a low affinity to a high affinity state was associated with an inhibition of the Ins(1,4,5)P3-induced Ca2+ release in permeabilized hepatocytes. These data suggest that the Ins(1,4,5)P3-dependent hormones, by increasing the intracellular Ca2+ concentration, induce a reversible transformation of the receptor from its low affinity state, coupled to the Ca2+ release, to a desensitized high affinity state. Transformation of the receptor may play a role in the oscillatory release of Ca2+ observed in single isolated hepatocytes.  相似文献   

11.
Inositol 1,4,5-trisphosphate (Ins P3) 3-kinase catalyzes the ATP-dependent phosphorylation of Ins P3 to Inositol 1,3,4,5-tetrakisphosphate (Ins P4). Ca2+/calmodulin (CaM)-sensitivity of Ins P3 3-kinase was measured in the crude soluble fraction from rat brain and different anatomic regions of bovine brain. Kinase activity was inhibited in the presence of EGTA (free Ca2+ below 1 nM) as compared to Ca2+ (10 microM free Ca2+) or Ca2+ (10 microM free Ca2+) and CaM (1 microM). Ca2+-sensitivity was also seen for the cAMP phosphodiesterase measured under the same assay conditions, but was not for the Ins P3 5-phosphatase. DEAE-cellulose chromatography of the soluble fraction of rat brain or bovine cerebellum resolved a Ca2+/CaM-sensitive Ins P3 3-kinase (maximal stimulation at 1 microM Ins P3 substrate level was 2.0-3.0 fold).  相似文献   

12.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

13.
To try to further define the mechanism of action of the putative second messenger inositol 1,3,4,5-tetrakisphosphate (InsP4), we have studied its effects in permeabilized cells expressing different levels of inositol trisphosphate receptor (InsP3R) types I and III and of the GTPase-activating protein GAP1IP4BP. During the growth curve of human HL-60 cells and mouse T15 cells there was an increase in these proteins, which was further increased by differentiation (HL-60) and, marginally, by transformation (T15). T15 cells entering the stationary phase showed much lower concentrations of these proteins and expression was below detection in apoptotic HL-60 cells. Rasp21 showed a different pattern of expression. The ratios of InsP3R subtypes seem to affect the dose-response curve for inositol 2,4,5-trisphosphate Ins(2,4,5)P3. In permeabilized T15 cells the curve was approximately 5-fold to the right of that obtained using HL-60 cells. However, permeabilized untreated and differentiated HL-60 cells and T15 cells all showed a comparable synergistic effect of InsP4 on Ca2+ release stimulated by a concentration of Ins(2,4,5)P3, releasing approximately 20% of the Ins(1,4,5)P3 sensitive Ca2+ pool. The data indicate that under these conditions InsP4 is acting independently of cell type, of the ratio of inositol trisphosphate receptor subtypes, and of the concentration of GAP1IP4BP.  相似文献   

14.
The ability of two enantiomeric fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. (-)-D-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 [D-2,2-F2-Ins(1,4,5)P3] was a full agonist [EC50 0.21 microM] and slightly less potent than D-Ins(1,4,5)P3 [EC50 0.13 microM]. (+)-L-2,2-F2Ins(1,4,5)P3 was a very poor agonist, confirming the stereospecificity of the Ins(1,4,5)P3 receptor. D-2,2-F2-Ins(1,4,5)P3 mobilized Ca2+ with broadly similar kinetics to Ins(1,4,5)P3 and was a substrate for Ins(1,4,5)P3 3-kinase inhibiting Ins(1,4,5)P3 phosphorylation (apparent Ki = 10.2 microM) but was recognised less well than Ins(1,4,5)P3. L-2,2-F2-Ins(1,4,5)P3 was a potent competitive inhibitor of 3-kinase (Ki = 11.9 microM). Whereas D-2,2-F2-Ins(1,4,5)P3 was a good substrate for Ins(1,4,5)P3 5-phosphatase, L-2,2-F2Ins(1,4,5)P3 was a relatively potent inhibitor (Ki = 19.0 microM).  相似文献   

15.
Inositol-polyphosphate-induced Ca2+ mobilization was investigated in saponin-permeabilized SH-SY5Y human neuroblastoma cells. Ins(1,4,5)P3 induced a dose-related release from intracellular Ca2+ stores with an EC50 (concn. giving half-maximal effect) of 0.1 microM and a maximal release of 70%. Ins(1,3,4)P3, DL-Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5 did not evoke Ca2+ mobilization in these cells when used at concentrations up to 10 microM. However, Ins(1,3,4,5)P4 was found to release Ca2+ in a dose-related manner, but the response was dependent on the source of Ins(1,3,4,5)P4 used. When commercially available D-Ins(1,3,4,5)P4 was used, the EC50 and maximal response values were 1 microM and 50% respectively, compared with values for chemically synthesized DL-Ins(1,3,4,5)P4 of 2 microM and 25%. The enhanced maximal response of commercial D-Ins(1,3,4,5)P4 was decreased by pretreatment with rat brain crude Ins(1,4,5)P3 3-kinase and was therefore concluded to be indicative of initial Ins(1,4,5)P3 contamination of the Ins(1,3,4,5)P4 preparation. When metabolism of DL-Ins(1,3,4,5)P4 (10 microM) in these cells at 25 degrees C was investigated by h.p.l.c., substantial amounts of Ins(1,4,5)P3 (0.2 microM) and Ins(1,3,4)P3 (0.8 microM) were found to be produced within 3 min. Analysis of DL-Ins(1,3,4,5)P4 incubation with cells at 4 degrees C, however, indicated that metabolism had been arrested ([3H]Ins(1,4,5)P3 detection limits were estimated to be approx. 0.01 microM). When chemically synthesized DL-Ins(1,3,4,5)P4 and incubation conditions of low temperature were used, the Ca2(+)-releasing properties of this compound were established to be 1 microM and 19% for the EC50 and maximal response values respectively. The results obtained strongly suggest that Ins(1,3,4,5)P4 alone has the ability to release intracellular Ca2+. However, in the presence of sub-maximal concentrations of Ins(1,4,5)P3, Ca2+ release appears to be synergistic with Ins(1,3,4,5)P4, but at supramaximal concentrations not even additive effects are observed.  相似文献   

16.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

17.
A cytosolic fraction derived from rat hepatocytes was used to investigate the regulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] kinase, the enzyme which converts Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The activity was doubled by raising the free Ca2+ concentration of the assay medium from 0.1 microM to 1.0 microM. A 5 min preincubation of the hepatocytes with 100 microM-dibutyryl cyclic AMP (db.cAMP) plus 100 nM-tetradecanoylphorbol acetate (TPA) resulted in a 40% increase in Ins(1,4,5)P3 kinase activity when subsequently assayed at 0.1 microM-Ca2+. This effect was smaller at [Ca2+] greater than 0.5 microM, and absent at 1.0 microM-Ca2+. Similar results were obtained after preincubation with 100 microM-db.cAMP plus 300 nM-vasopressin (20% increase at 0.1 microM-Ca2+; no effect at 1.0 microM-Ca2+). Preincubation with vasopressin, db.cAMP or TPA alone did not alter Ins(1,4,5)P3 kinase activity. It is proposed that these results, together with recent evidence implicating Ins(1,3,4,5)P4 in the control of Ca2+ influx, could be relevant to earlier findings that hepatic Ca2+ uptake is synergistically stimulated by cyclic AMP analogues and vasopressin.  相似文献   

18.
Hydrolysis of inositol phosphates by plant cell extracts.   总被引:5,自引:0,他引:5       下载免费PDF全文
S K Joseph  T Esch    W D Bonner  Jr 《The Biochemical journal》1989,264(3):851-856
A gel-filtered soluble fraction prepared from suspension-cultured Nicotiana tabacum cells hydrolysed inositol mono-, bis- and tris-phosphates. At a concentration of 7.5 microM the rates of hydrolysis followed the sequence Ins(1,4,5)P3 greater than Ins(1,4)P2 greater than Ins(4)P congruent to Ins(1)P. The major products of Ins(1,4,5)P3 hydrolysis identified by h.p.l.c. were Ins(1,4)P2 and Ins(4,5)P2. Ins(1,4)P2 was hydrolysed exclusively to Ins(4)P. The inclusion of Ca2+ in the incubation buffer markedly stimulated the hydrolysis of all the inositol phosphate substrates. Under identical conditions, Ca2+ inhibited the hydrolysis of inositol phosphates by soluble extracts prepared from rat brain. Half-maximal stimulation of Ins(1,4)P2 hydrolysis was obtained at free [Ca2+] of 0.6 and 1.2 microM when the Mg2+ concentration in the incubations was 0.3 and 1.0 mM respectively. This effect of Ca2+ was exerted solely by increasing the Vmax. of hydrolysis without affecting the Km for Ins(1,4)P2. Again, in contrast with brain, the hydrolysis of inositol bis- or mono-phosphates was insensitive to high concentrations of Li+. We conclude that plants contain specific Li+-insensitive inositol phosphate phosphatases that are regulated by low concentrations of Ca2+ in a manner which is different from that observed in mammalian tissues.  相似文献   

19.
The effect of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and calcium ionophore A23187 on Ca2+ release from bovine adrenal medullary secretory vesicles and microsomes was examined. Ins(1,4,5)P3 released 3.5 nmol of Ca2+/mg protein from secretory vesicles and 1.5 nmol of Ca2+/mg protein from microsomes as measured by a Ca2(+)-selective electrode. However, A23187 promoted Ca2+ uptake into vesicles while releasing Ca2+ from microsomes. Ins(1,4,5)P3-induced Ca2+ release from secretory vesicles was rapid, but the released Ca2+ was absorbed within 3 min during which the Ins(1,4,5)P3-releasable pools were refilled. The in situ calcium content of secretory vesicle measured by atomic absorption spectrometry was 112 +/- 6.3 nmol/mg protein indicating the potential importance of secretory vesicles as an intracellular Ca2+ store. The high Ca2(+)-buffering capacity of secretory vesicles is presumed to be due to the high Ca2(+)-binding capacity of chromogranin A, the major intravesicular protein, which has calsequestrin-like properties.  相似文献   

20.
Electropermeabilised insulin-secreting RINm5F cells sequestered Ca2+, resulting in a steady-state level of the ambient free Ca2+ concentration corresponding to 723 +/- 127 nM (mean +/- SEM, n = 10), as monitored by a Ca(2+)-selective minielectrode. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) promoted a rapid and pronounced release of Ca2+. This Ca2+ was resequestered and a new steady-state Ca2+ level was attained, which was always lower (460 +/- 102 nM, n = 10, P less than 0.001) than the steady-state Ca2+ level maintained before the addition of Ins(1,4,5)P3. Whereas the initial reuptake of Ca2+ subsequent to Ins(1,4,5)P3 stimulation was relatively slow, the later part of reuptake was fast as compared to the reuptake phases of a pulse addition of extraneous Ca2+. In the latter case the uptake of Ca2+ resulted in a steady-state level similar to that found in the absence of Ins(1,4,5)P3. Addition of Ins(1,4,5)P3 under this condition resulted in a further Ca2+ uptake and thus a lower steady-state Ca2+ level. Heparin, which binds to the Ins(1,4,5)P3 receptor, also lowered the steady-state free Ca2+ concentration. In contrast to Ins(1,4,5)P3, inositol 1,3,4,5-tetrakisphosphate was without effect on Ca2+ sequestration. These findings are consistent with the presence of a high-affinity Ins(1,4,5)P3 receptor promoting continuous release of Ca2+ under basal conditions and/or the Ins(1,4,5)P3 receptor being actively involved in Ca2+ sequestration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号