首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipid composition of bovine thyroid plasma membranes was modified using the nonspecific lipid transfer protein from bovine liver. Incubation of plasma membranes with transfer protein and phosphatidylinositol-containing liposomes caused a strong, concentration dependent, inhibition of TSH-stimulated adenylate cyclase activity. Other phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidic acid were two to four times less effective as inhibitors of TSH-stimulation. The phosphatidylinositol-induced inhibition was not reversed when more than 80% of phosphatidylinositol incorporated was removed using phosphatidylinositol-specific phospholipase C. Incorporation of phosphatidylinositol in plasma membranes provoked no significant change in the fluorescence anisotropies of the fluorophores 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(14-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), indicating that the inhibition was not due to changes in membrane fluidity. At phosphatidylinositol concentrations causing a 66% reduction in TSH-stimulated adenylate cyclase activity cholera toxin- and forskolin-stimulated activity as well as basal activity were decreased by maximally 10%. Since TSH binding to bovine thyroid plasma membranes was not affected it is suggested that phosphatidylinositol can act as a negative modulator of the TSH activation of adenylate cyclase and this probably by interfering with the coupling between the occupied TSH receptor and the stimulatory GTP-binding regulatory protein of the adenylate cyclase complex.  相似文献   

2.
Preincubation of turkey erythrocytes with beta-adrenergic agonists leads to an attenuation of the responsiveness of adenylate cyclase to subsequent hormonal stimulation. Recently, our laboratory has shown (Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. D., Caron, M. G., and Lefkowitz, R. J. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 3173-3177) using 32Pi incorporation that phosphorylation of the beta-adrenergic receptor accompanies this desensitization process. We now report that, as determined from intracellular [gamma-32P] ATP specific activity measurements, this phosphorylation reaction occurs in a stoichiometric fashion. Under basal conditions there exists 0.75 +/- 0.1 mol of phosphate per mol of receptor whereas under maximally desensitized conditions this ratio increases to 2.34 +/- 0.13 mol/mol. This phosphorylation of the receptor is dose-dependent with respect to isoproterenol and exhibits a dose-response curve coincidental with that for isoproterenol-induced desensitization of adenylate cyclase. The time courses for receptor phosphorylation and adenylate cyclase desensitization are identical. In addition, the rate of resensitization of adenylate cyclase activity is comparable to the rate of return of the phosphate/receptor stoichiometries to control levels. Both the phosphorylation and desensitization reactions are pharmacologically specific as indicated by the high degree of stereoselectivity, rank order of catecholamines, and blockade by the specific beta-adrenergic antagonist, propranolol. Incubation of turkey erythrocytes with cAMP and cAMP analogs maximally activates cAMP-dependent protein kinase but only partially mimics isoproterenol in promoting phosphorylation of the receptor in concordance with their partial effects in inducing desensitization. Conversely, activators or inhibitors of Ca2+/calmodulin kinase or protein kinase C do not affect the isoproterenol-induced desensitization. These results indicate that desensitization of turkey erythrocyte adenylate cyclase is highly correlated with phosphorylation of the beta-adrenergic receptor and that these events are mediated, at least partially, by cAMP.  相似文献   

3.
4.
Plasma membranes were isolated from bovine renal cortex. This particulate, adenylate cyclase-containing fraction was stimulated to produce cyclic AMP by parathyroid hormone and fluoride. When the time-course of adenylate cyclase activity was investigated, it was found that while PTH-stimulated cyclic AMP production comes to a halt in about 15 minutes after the initiation of the reaction, fluoride-stimulated activity continues unabated for at least an hour. Experiments to determine the cause of this showed that the cyclase enzyme is not degraded under our experimental conditions, but is inhibited by a soluble, unbound product of the reaction which requires ATP for its synthesis. In our experiments degradation of parathyroid hormone was relatively slow and could not account for the rapid inhibition of PTH-stimulated cyclase activity. Of the various agents tested, cyclic AMP was found capable of inhibiting PTH-stimulated cyclic AMP production by our purified membrane preparation. Half-maximal inhibition was observed at around 10(-6) M concentrations of the nucleotide. Pyrophosphate, adenosine, 5'-AMP and ADP had no effects. The significance of these results in relation to the regulation of adenylate cyclase activity is discussed.  相似文献   

5.
The regulatory component (G/F) of adenylate cyclase has been purified from turkey erythrocyte plasma membranes by adaptation of procedures developed for purification of the rabbit liver protein. The major modifications entail inclusion of high concentrations of NaCl to facilitate extraction and reconstitution of the protein. A typical preparation yields 200 micrograms of protein with a reconstitutive specific activity of 3-4 mumol . min-1 mg-1. Turkey erythrocyte G/F contains two putative subunits of 35,000 and 45,000 daltons. The 52,000-dalton polypeptide that appears to be a component of rabbit liver G/F is lacking. In solution, G/F behaves as a particle with Mr = 81,000. This value is reduced to 50,000 in the presence of activating ligands, suggesting dissociation of subunits. Activation of G/F by guanine nucleotide analogs is markedly accelerated in the presence of high concentrations of Mg2+. Reconstitutive and physical properties of the protein are also affected by fluoride. Cyc- S49 lymphoma membranes reconstituted with turkey erythrocyte G/F acquire properties that are characteristic of the turkey adenylate cyclase system; at least certain differing characteristics of adenylate cyclase systems are thus dictated by the nature of their G/F.  相似文献   

6.
The three-dimensional solution structure of a nonspecific lipid transfer protein extracted from maize seeds determined by 1H NMR spectroscopy is described. This cationic protein consists of 93 amino acid residues. Its structure was determined from 1,091 NOE-derived distance restraints, including 929 interresidue connectivities and 197 dihedral restraints (phi, psi, chi 1) derived from NOEs and 3J coupling constants. The global fold involving four helical fragments connected by three loops and a C-terminal tail without regular secondary structures is stabilized by four disulfide bridges. The most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule. The global fold of this protein, very similar to that of a previously described lipid transfer protein extracted from wheat seeds (Gincel E et al., 1994, Eur J Biochem 226:413-422) constitutes a new architecture for alpha-class proteins. 1H NMR and fluorescence studies show that this protein forms well-defined complexes in aqueous solution with lysophosphatidylcholine. Dissociation constants, Kd, of 1.9 +/- 0.6 x 10(-6) M and > 10(-3) M were obtained with lyso-C16 and -C12, respectively. A structure model for a lipid-protein complex is proposed in which the aliphatic chain of the phospholipid is inserted in the internal cavity and the polar head interacts with the charged side chains located at one end of this cavity. Our model for the lipid-protein complex is qualitatively very similar to the recently published crystal structure (Shin DH et al., 1995, Structure 3:189-199).  相似文献   

7.
8.
9.
The transfer of phospholipid molecules between biological and synthetic membranes is facilitated by the presence of soluble catalytic proteins, such as those isolated from bovine brain which interacts with phosphatidylinositol and phosphatidylcholine and from bovine liver which is specific for phosphatidylcholine. A series of tertiary amine local anesthetics decreases the rates of protein-catalyzed phospholipid transfer. The potency of inhibition is dibucaine>tetracaine>lidocaine>procaine, an order which is compared with and identical to those for a wide variety of anesthetic-dependent membrane phenomena. Half-maximal inhibition of phosphatidylinositol transfer by dibucaine occurs at a concentration of 0.18 mM, significantly lower than the concentration of 1.9 mM required for half-maximal inhibition of phosphatidylcholine transfer activity of the brain protein. Comparable inhibition of liver protein phosphatidylcholine transfer activity is observed at 1.6 mM dibucaine. For activity measurements performed at different pH, dibucaine is more potent at the lower pH values which favor the equilibrium toward the charged molecular species. With membranes containing increasing molar proportions of phosphatidate, dibucaine is increasingly more potent. No effect of Ca2+ on the control transfer activity or the inhibitory action of dibucaine is noted. These results are discussed in terms of the formation of specific phosphatidylinositol or phosphatidylcholine complexes with the amphiphilic anesthetics in the membrane bilayer.  相似文献   

10.
11.
We have recently reported that the highly potent beta-adrenergic affinity label [125I]bromoacetylamino cyanopindolol ([125I]BAM-CYP) irreversibly blocks the turkey erythrocyte beta-adrenoceptor binding site by combining with a receptor-associated non-protein component. In this communication, we report: lipid labelling is inhibited by beta 1-adrenergic ligands with the potency ratio and stereospecificity characteristic for the turkey erythrocyte beta 1-adrenoceptor; the tagged component is a glycolipid, probably a ganglioside; [125I]BAM-CYP-blocked receptor, after solubilization in deoxycholate, can be separated from the [125I]BAM-CYP-glycolipid with restoration of the binding capacity of the beta 1-adrenoceptor protein; the tightly associated [125I]BAM-CYP-labelled glycolipid can be displaced by a glycolipid mixture extracted from turkey erythrocyte membranes but not by bovine brain gangliosides, when the blocked receptor is solubilized in digitonin. This is the first direct demonstration that a receptor protein is associated with a specific membrane lipid. The possibility that glycolipids play a role in receptor-mediated signal transduction is discussed in view of these findings and in view of data from the literature.  相似文献   

12.
The interaction of a nonspecific wheat lipid transfer protein (LTP) with phospholipids has been studied using the monolayer technique as a simplified model of biological membranes. The molecular organization of the LTP-phospholipid monolayer has been determined by using polarized attenuated total internal reflectance infrared spectroscopy, and detailed information on the microstructure of the mixed films has been investigated by using epifluorescence microscopy. The results show that the incorporation of wheat LTP within the lipid monolayers is surface-pressure dependent. When LTP is injected into the subphase under a dipalmytoylphosphatidylglycerol monolayer at low surface pressure (< 20 mN/m), insertion of the protein within the lipid monolayer leads to an expansion of dipalmytoylphosphatidylglycerol surface area. This incorporation leads to a decrease in the conformational order of the lipid acyl chains and results in an increase in the size of the solid lipid domains, suggesting that LTP penetrates both expanded and solid domains. By contrast, when the protein is injected under the lipid at high surface pressure (> or = 20 mN/m) the presence of LTP leads neither to an increase of molecular area nor to a change of the lipid order, even though some protein molecules are bound to the surface of the monolayer, which leads to an increase of the exposure of the lipid ester groups to the aqueous environment. On the other hand, the conformation of LTP, as well as the orientation of alpha-helices, is surface-pressure dependent. At low surface pressure, the alpha-helices inserted into the monolayers are rather parallel to the monolayer plane. In contrast, at high surface pressure, the alpha-helices bound to the surface of the monolayers are neither parallel nor perpendicular to the interface but in an oblique orientation.  相似文献   

13.
14.
The 3D solution structure of wheat nonspecific lipid transfer protein (ns-LTP) complexed with prostaglandin B2, a lipid with both vinyl and hydroxylated groups, has been determined by 1H 2D NMR. The global fold of the protein is close to the previously published structures of wheat, maize, barley and rice ns-LTPs. The ligand is almost completely embedded in the hydrophobic core of the protein. Structure comparisons of free and bound wheat ns-LTP reveal that the binding of prostaglandin B2 hardly affects the global fold of the protein. The structural data on this unusual complex are discussed and compared with other known ns-LTP lipid-complexes.  相似文献   

15.
Lai YT  Cheng CS  Liu YN  Liu YJ  Lyu PC 《Proteins》2008,72(4):1189-1198
Plant nonspecific lipid transfer proteins (nsLTPs) are small, basic proteins constituted mainly of alpha-helices and stabilized by four conserved disulfide bridges. They are characterized by the presence of a tunnel-like hydrophobic cavity, capable of transferring various lipid molecules between lipid bilayers in vitro. In this study, molecular dynamics (MD) simulations were performed at room temperature to investigate the effects of lipid binding on the dynamic properties of rice nsLTP1. Rice nsLTP1, either in the free form or complexed with one or two lipids was subjected to MD simulations. The C-terminal loop was very flexible both before and after lipid binding, as revealed by calculating the root-mean-square fluctuation. After lipid binding, the flexibility of some residues that were not in direct contact with lipid molecules increased significantly, indicating an increase of entropy in the region distal from the binding site. Essential dynamics analysis revealed clear differences in motion between unliganded and liganded rice nsLTP1s. In the free form of rice nsLTP1, loop1 exhibited the largest directional motion. This specific essential motion mode diminished after binding one or two lipid molecules. To verify the origin of the essential motion observed in the free form of rice nsLTP1, we performed multiple sequence alignments to probe the intrinsic motion encoded in the primary sequence. We found that the amino acid sequence of loop1 is highly conserved among plant nsLTP1s, thus revealing its functional importance during evolution. Furthermore, the sequence of loop1 is composed mainly of amino acids with short side chains. In this study, we show that MD simulations, together with essential dynamics analysis, can be used to determine structural and dynamic differences of rice nsLTP1 upon lipid binding.  相似文献   

16.
Activation of particulate adenylate cyclase and detergent-soluble (lubrol PX) adenylate cyclase occurred when the enzyme was preincubated at 37 degrees in the presence of 5 mM NaF and 5mM MgSO4. Under these conditions the specific activity of the enzyme increased more than twofold in 8 to 12 min. Activation also occurred in the presence of 5 mM NaF alone, but the rate of activation was slower. Under these conditions, activation was inhibited by 1mM EDTA, but this inhibition was prevented byMg++. No activation was observed at 0 degrees or in the absence of F. After repeated extraction with detergent, particulate adenylate cyclase was not stimulated by mM NaF, and activation by preincubation with Mg++ and F- was significantly reduced. Activation was restored by recombination of this particulate fraction with the initial detergent extract. This activating effect appeared to be mediated by one or more proteins present in the detergent extract.  相似文献   

17.
Glucagon was acylated at position 12 using conditions favoring reaction with the epsilon-amino group of lysine. The N epsilon-acetyl, N epsilon-hexanoyl, and N epsilon-decanoyl derivatives were prepared and purified. Secondary structure as measured by circular dichroism was lower in all derivatives than in glucagon, both in 95% methanol and in 25 mM sodium dodecyl sulfate at pH 2 and pH 12. N epsilon-Acetyl glucagon was less active than the native hormone in a radioreceptor assay and higher concentrations of this derivative were required to stimulate the adenylate cyclase activity of rat liver plasma membranes. The maximal extent of cyclase activation by this derivative was less than that found with the native hormone. N epsilon-Hexanoyl glucagon and N epsilon-decanoyl glucagon had greater activity than N epsilon-acetyl glucagon in receptor binding as well as in adenylate cyclase activation, although these two derivatives were not as active as the native hormone. N epsilon-hexanoyl glucagon and N epsilon-decanoyl glucagon were more potent in receptor binding than in adenylate cyclase activation. From these results it appears that the positive charge of the epsilon-amino groups may have a specific role in obtaining maximal biological activity, while the acyl groups contribute to the nonspecific hydrophobic interactions between the hormone and its receptor. In addition, a possible relationship between stabilization of the amphipathic helix in solution and the activity of these and other N epsilon-derivatives of glucagon is discussed.  相似文献   

18.
The structure of a nonspecific lipid transfer protein from barley (ns-LTPbarley) in complex with palmitate has been determined by NMR spectroscopy. The structure has been compared to the structure of ns-LTPbarley in the absence of palmitate, to the structure of ns-LTPbarley in complex with palmitoyl coenzyme A, to the structure of ns-LTPmaize in its free form, and to the maize protein complexed with palmitate. Binding of palmitate only affects the structure of ns-LTPbarley moderately in contrast to the binding of palmitoyl coenzyme A, which leads to a considerable expansion of the protein. The modes of binding palmitate to the maize and barley protein are different. Although in neither case there are major conformational changes in the protein, the orientation of the palmitate in the two proteins is exactly opposite.  相似文献   

19.
The sequence encoding a wheat (Triticum durum) nonspecific lipid transfer protein of 9 kDa (nsLTP1) was inserted into an Escherichia coli expression vector, pET3b. The recombinant protein that was expressed accumulated in insoluble cytoplasmic inclusion bodies and was purified and refolded from them. In comparison with the corresponding protein isolated from wheat kernel, the refolded recombinant protein exhibits a methionine extension at its N-terminus but has the same structure and activity as demonstrated by CD, lipid binding and lipid transfer assays. Using the same expression system, four mutants with H5Q, Y16A, Q45R and Y79A replacements were produced and characterized. No significant changes in structure or activity were found for three of the mutants. By contrast, lipid binding experiments with the Y79A mutant did not show any increase of tyrosine fluorescence as observed with the wild-type nsLTP1. Comparison of the two tyrosine mutants suggested that Tyr79 is the residue involved in this phenomenon and thus is located close to the lipid binding site as expected from three-dimensional structure data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号