首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Coulthard AB  Nolan N  Bell JB  Hilliker AJ 《Genetics》2005,170(4):1711-1721
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.  相似文献   

3.
4.
5.
6.
7.
The vestigal (vg) gene encodes a nuclear protein which plays a major role in the formation of the wing of Drosophila. Resistance or sensitivity to aminopterin, an inhibitor of the dihydrofolate reductase enzyme in D. melanogaster, seems to be associated with a specific alteration in vg gene function. Wild-type and vg mutant strains selected for growth on increasing concentrations of aminopterin display changes in physiological and biochemical parameters such as viability on normal and aminopterin-containing media, duration of development, wing phenotype, dihydrofolate reductase activity, and cross-resistance to fluorodeoxyuridine (FUdR) and to methotrexate. Our results indicate that the mechanisms of resistance differ in the wild-type and mutant strains. The vg 83b27 mutant, in which the major part of intron 2 of the vg gene is deleted, is associated with a high rate of resistance to FUdR, an inhibitor of thymidylate synthetase. Moreover, vg 83b27/vg BGheterozygotes, which are wild type when grown on normal medium, display a strong vg phenotype when grown on aminopterin. Our results indicate a role for the vestigial locus in mediating resistance to inhibitors of dTMP synthesis.  相似文献   

8.
Ethanol was tested for teratogenicity in Drosophila melanogaster. Treatment consisted of rearing the fly larvae in media containing initial ethanol concentrations of 0%, 4%, 8%, or 14% by weight. Emerging flies were inspected for gross malformations. A low frequency of malformations was seen among controls (0.82%), increasing to 10.36% of emerging adults at the highest ethanol dose. The most common malformation involved the legs (segments missing or distorted or complete absence) and wings (uninflated, distorted, or absent). Less frequent defects included fused or missing mouth parts and missing halteres. Also, by exposing staged larvae to ethanol and examining the emerging flies, developmental stage sensitivity of Drosophila was investigated in terms of timing of treatment initiation. The results suggested that the incidence of defects increased with length of exposure. These results support the assumption that ethanol itself is the causative agent in ethanol-induced developmental toxicity and further support the use of Drosophila for developmental toxicity screening.  相似文献   

9.
Strains of Drosophila melanogaster homozygous for either the Adh F or the Adh S allele were kept on food supplemented with ethanol for 20 generations. These strains (FE and SE) were tested for tolerance to ethanol and compared with control strains (FN and SN). The E strains showed increased tolerance to ethanol both in the adult and in the juvenile life stages. In adults the increase in tolerance was not accompanied by an increase in overall ADH activity. However, there were changes in the distribution of ADH over the body parts. Flies of the FE strain possessed significantly more ADH in the abdomen, compared with FN. Another set of FN and SN populations were started both on standard food and on ethanol food with reduced yeast concentrations. After 9 months ADH activities were determined in flies from these populations which had been placed on three different media: the food the populations had been kept on, regular food and regular food supplemented with ethanol. The phenotypic effects of yeast reduction on ADH activity were considerably, but longterm genetic effects were limited.  相似文献   

10.
G T Baker 《Gerontologia》1975,21(4):203-210
The activity of arginine phosphokinase, an important muscle enzyme in insects, was investigated with age in vestigial-winged and wild-type Drosophila melanogaster. Identical patterns of age-dependent activity changes were observed in the vestigial-winged flies as in the wild-type, even though vestigial-winged flies exhibit a 50% mortality approximately two thirds that of the wild-type as well as being incapable of flight. Results indicate that the age-dependent changes in arginine phosphokinase activity are intrinsically regulated within the cells of the flight muscle.  相似文献   

11.
12.
Radiation and Environmental Biophysics - The purpose of this investigation was to study the effect of acute γ-irradiation of parent adults on the endoreduplication of giant chromosomes in F1...  相似文献   

13.
14.
15.
Strains of Drosophila melanogaster homozygous for either the AdhF or the AdhS allele were kept on food supplemented with ethanol for 20 generations. These strains (FE and SE) were tested for tolerance to ethanol and compared with control strains (FN and SN). The E strains showed increased tolerance to ethanol both in the adult and in the juvenile life stages. In adults the increase in tolerance was not accompanied by an increase in overall ADH activity. However, there were changes in the distribution of ADH over the body parts. Flies of the FE strain possessed significantly more ADH in the abdomen, compared with FN. Another set of FN and SN populations were started both on standard food and on ethanol food with reduced yeast concentrations. After 9 months ADH activities were determined in flies from these populations which had been placed on three different media: the food the populations had been kept on, regular food and regular food supplemented with ethanol. The phenotypic effects of yeast reduction on ADH activity were considerably, but longterm genetic effects were limited.  相似文献   

16.
The role of alcohol dehydrogenase (ADH) activity in ethanol toxicity was investigated in Drosophila melanogaster. Flies from three congenic Adh strains (high, medium, and low ADH activity) were allowed to deposit eggs on medium containing 0, 4, or 8% ethanol. The resulting larvae were allowed to complete their development in the medium, and emerging flies were examined for defects. Flies with high ADH activity had malformation incidences of 0.8, 2.4, and 5.2% at 0, 4, and 8% ethanol, respectively. The comparable incidences for the low ADH strain were 1.0, 4.1, and 8.4%, while those for the medium ADH strain were intermediate in value. These results indicate that ethanol teratogenesis may be inversely related to ADH activity. When larvae were treated with ethanol for different lengths of time during development, the incidence of defects in flies from the high ADH strain was 3.9% when exposure started at the first instar and 3.09% when exposure started at the third instar. Results of the same exposures for the intermediate ADH strain were 5.2 and 3.4%, respectively, while those for the low ADH strain were 6.9 and 5.5%, respectively. Thus, length of ethanol exposure was directly related to the increased incidence of malformations in all tested Drosophila strains. For all tested strains, defect incidences appeared to be dose-related as well, regardless of length of exposure. ADH in Drosophila has a dual function and thus can catalyze oxidation of both ethanol and its toxic metabolite, acetaldehyde. This suggests that ethanol is the proximate teratogen in Drosophila.  相似文献   

17.
When cultured on a defined diet, ethanol was an efficient substrate for lipid synthesis in wild-type Drosophila melanogaster larvae. At certain dietary levels both ethanol and sucrose could displace the other as a lipid substrate. In wild-type larvae more than 90% of the flux from ethanol to lipid was metabolized via the alcohol dehydrogenase (ADH) system. The ADH and aldehyde dehydrogenase activities of ADH were modulated in tandem by dietary ethanol, suggesting that ADH provided substrate for lipogenesis by degrading ethanol to acetaldehyde and then to acetic acid. The tissue activity of catalase was suppressed by dietary ethanol, implying that catalase was not a major factor in ethanol metabolism in larvae. The activities of lipogenic enzymes, sn-glycerol-3-phosphate dehydrogenase, fatty acid synthetase (FAS), and ADH, together with the triacylglycerol (TG) content of wild-type larvae increased in proportion to the dietary ethanol concentration to 4.5% (v/v). Dietary ethanol inhibited FAS and repressed the accumulation of TG in ADH-deficient larvae, suggesting that the levels of these factors may be subject to a complex feedback control.This research was supported by National Institutes of Health Grant GM-28779 to B.W.G. and a Monash University Research Grant to S.W.M.  相似文献   

18.
The effects of environmental ethanol on larva-to-pupa survival and on the activities of four enzymes were investigated in three Drosophila melanogaster strains. The strains had different allelic combinations at the Odh and Aldox loci on their third chromosomes, but they all carried the Adh S -Gpdh F allelic combination on the second chromosome. Replicates of each of the strains were exposed to three different ethanol treatments: (i) no ethanol in the medium (control); (ii) 5% ethanol for a single generation (short-term exposure); (iii) 5% ethanol for 20 generations (long-term exposure). In all experiments, the activities of four enzymes (ADH, ODH, GPDH and AOX) were measured in larvae, pupae and adults. The results showed that (i) the larval and adult metabolic responses to environmental ethanol were different; (ii) enzyme activity changes under short-term exposure differed from those measured under long-term exposure; (iii) the activities of the allozymes common to all strains (ADH-S and GPDH-F), differed depending on the genetic background. Changes in larva-to-pupa survival were seen when the larvae of control and exposed lines of the three strains were confronted with various concentrations of ethanol. In all three strains, the exposed lines had significantly higher initial survival rate and ethanol tolerance than the control lines. Strain-specific differences were observed in the ethanol tolerance of both types of line.  相似文献   

19.
Ecdysteroid-regulated gene expression in Drosophila melanogaster   总被引:6,自引:0,他引:6  
  相似文献   

20.
The effects of ethanol upon the development of two strains of D. melanogaster (France and tropical Africa) were studied using two different methods; either the feeding medium containing ethanol was not renewed, or it was changed daily to keep the concentration stable. Toxic effects were much more obvious with the stabilized concentration. The difference in tolerance, already known for the adults of the two populations, was also observed for larvae; the French strain was much more tolerant. Ethanol slowed down larval development but adult weight at emergence could be increased. Lipid content of adults was increased by larval ethanol feeding while water content decreased. Two populations did not react exactly in the same way and an interaction was observed between genotype and experimental technique. The results should help to clarify the role of alcoholic fermentation upon D. melanogaster under natural conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号