首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three experiments were conducted to determine the effects of low-dose progesterone presynchronization and eCG on pregnancy rates to GnRH-based, timed-AI (TAI) in beef cattle (GnRH on Day 0, PGF on Day 7, with GnRH and TAI on Day 9, 54-56 h after PGF). Experiments 1 and 2 were 2 × 2 factorials with presynchronization (with or without a once-used CIDR; Days −15 to 0 in Experiment 1 and Days −7 to 0, with PGF at insertion, in Experiment 2), and with or without 400 IU eCG on Day 7 in suckled cows. In Experiment 3, suckled cows and nulliparous heifers were either presynchronized with a twice-used CIDR (Days −5 to 0) and PGF at insertion, or no treatment prior to insertion of a new CIDR (Days 0-7). Presynchronization increased (P < 0.05) ovulation rate to GnRH on Day 0 (75.0% vs 48.7%, 76.7% vs 55.0%, and 60.0% vs 36.1% for Experiments 1, 2, and 3, respectively), increased the diameter of the preovulatory follicle in Experiments 1 and 2, and increased the response to PGF (regardless of parity) in Experiment 1 (P < 0.01), and in primiparous cows in Experiment 2 (P < 0.01). Effects of presynchronization on pregnancy rates (53.4% vs 54.1%, 57.7% vs 45.3%, and 54.3% vs 44.4% for Experiments 1, 2, and 3, respectively) were influenced by parity and eCG (P < 0.05). Treatment with eCG had no effect (P > 0.05) on the diameter of the preovulatory follicle (Experiment 1), or the response to PGF (Experiments 1 and 2), but tended (P = 0.08) to improve pregnancy rates, especially in primiparous cows that were not presynchronized (P < 0.01). However, the effects of eCG and presynchronization were not additive.  相似文献   

2.
C.C. Dias  M.L. Day 《Theriogenology》2009,72(3):378-385
Two experiments were performed to test the hypothesis that elevated progesterone concentrations impair pregnancy rate to timed artificial insemination (TAI) in postpuberal Nelore heifers. In Experiment 1, postpuberal Nelore heifers (n = 398) received 2 mg estradiol benzoate (EB) and either a new progesterone-releasing intravaginal device containing 1.9 g of progesterone (CIDR) (first use) or a CIDR previously used for 9 d (second use) or for 18 d (third use) on Day 0, 12.5 mg prostaglandin F (PGF) on Day 7, 0.5 mg estradiol cypionate (ECP) and CIDR withdrawal on Day 9, and TAI on Day 11. Largest ovarian follicle diameter was determined on Day 11. The third-use CIDR treatment increased largest ovarian follicle diameter and pregnancy rate. Conception to TAI was reduced in heifers with smaller follicles in the first- and second-use CIDR treatments, but not in the third-use CIDR treatment. In Experiment 2, postpuberal Nelore heifers received the synchronization treatment described in Experiment 1 or received 12.5 mg PGF on Day 9 rather than Day 7. In addition, 50% of heifers received 300 IU equine chorionic gonadotropin (eCG) on Day 9. Heifers were either TAI (Experiment 2a; n = 199) or AI after detection of estrus (Experiment 2b; n = 125 of 202). In Experiment 2a, treatment with eCG increased pregnancy rate to TAI in heifers that received PGF on Day 9 but not on Day 7 and in heifers that received a first-use CIDR but not in heifers that received a third-use CIDR. Treatments did not influence reproductive performance in Experiment 2b. In summary, pregnancy rate to TAI in postpuberal Nelore heifers was optimized when lower concentrations of exogenous progesterone were administered, and eCG treatment was beneficial in heifers expected to have greater progesterone concentrations.  相似文献   

3.
The objective was to determine whether the presence of fertility-associated antigen (FAA) on sperm collected from Nelore (Bos indicus) bulls can be used to assess potential fertility of sperm for use at first-service fixed-time AI (TAI). Six Nelore bulls were selected based on FAA status (FAA-negative: N = 3; FAA-positive: N = 3) and the ability to produce neat semen with ≥ 70% morphologically normal sperm and 60% estimated progressive motility before cryopreservation. In Experiment 1, suckled multiparous Nelore cows (N = 835) were evaluated for body condition score (BCS) and received an intravaginal progesterone device (CIDR) and 2.0 mg of estradiol benzoate (Day 0). On Day 9 the CIDR was removed, 12.5 mg of PGF and 0.5 mg of estradiol cypionate were administered, and calves were removed for 48 h. All cows received TAI on Day 11 (48 h after CIDR removal). Pregnancy per TAI (P/TAI) was not different between FAA-positive and FAA-negative bulls (41.5% vs. 39.3%, respectively). There was an effect of AI technician on P/TAI (36.0% vs. 43.9%; P < 0.05) and BCS tended to affect P/TAI (P = 0.09), as cows with BCS ≥ 2.75 were 1.4 times more likely to become pregnant compared with cows with BCS < 2.75. In Experiment 2, nulliparous Nelore heifers (N = 617) were evaluated for BCS and received a CIDR and estradiol benzoate (2.0 mg) on Day 0. On Day 7, all heifers received PGF (12.5 mg). On Day 9, CIDR inserts were removed and all heifers received estradiol cypionate (0.6 mg) and 200 IU eCG. All heifers received TAI on Day 11 (48 h after CIDR removal). Pregnancy/TAI was different (P = 0.04) between FAA-positive and FAA-negative bulls (33.7% vs. 40.7%, respectively). Presence of FAA on sperm was unsuccessful in assessing the potential fertility of sperm for use in TAI.  相似文献   

4.
We hypothesized that pregnancy outcomes may be improved by inducing luteal regression, ovulation, or both (i.e., altering progesterone status) before initiating a timed–artificial insemination (TAI) program in suckled beef cows. This hypothesis was tested in two experiments in which cows were treated with either PGF (PG) or PG + GnRH before initiating a TAI program to increase the proportion of cows starting the program in a theoretical marginal (<1 ng/mL; experiment 1) or elevated (≥1 ng/mL; experiment 2) progesterone environment, respectively. The control was a standard CO-Synch + controlled internal drug release (CIDR) program employed in suckled beef cows (100 μg GnRH intramuscularly [IM] [GnRH-1] and insertion of a progesterone-impregnated intravaginal CIDR insert on study Day −10, 25 mg PG and CIDR insert removal on study Day −3, and 100 μg GnRH IM [GnRH-2] and TAI on study Day 0). In both experiments, blood was collected before each injection for later progesterone analyses. In experiment 1, cows at nine locations (n = 1537) were assigned to either: (1) control or (2) PrePG (same as control with a PG injection on study Day −13). The PrePG cows had larger (P < 0.05) follicles on study Day −10 and more (P < 0.05) ovulated after GnRH-1 compared with control cows (60.6% vs. 36.5%), but pregnancy per TAI was not altered (55.5% vs. 52.2%, respectively). In experiment 2, cows (n = 803) at four locations were assigned to: (1) control or (2) PrePGG (same as control with PG injection on study Day −20 and GnRH injection on study Day −17). Although pregnancy per TAI did not differ between control and PrePGG cows (44.0% vs. 44.4%, respectively), cows with body condition score greater than 5.0 or 77 or more days postpartum at TAI were more (P < 0.05) likely to become pregnant than thinner cows or those with fewer days postpartum. Presynchronized cows in both experiments were more (P < 0.05) likely than controls to have luteolysis after initial PG injections and reduced (P < 0.05) serum progesterone; moreover, treatments altered the proportion of cows and pregnancy per TAI of cows in various progesterone categories before the onset of the TAI protocol. In combined data from both experiments, cows classified as anestrous before the study but with elevated progesterone on Day −10 had increased (P < 0.05) pregnancy outcomes compared with anestrous cows with low progesterone concentrations. Progesterone concentration had no effect on pregnancy outcome of cycling cows. In summary, luteal regression and ovulation were enhanced and progesterone concentrations were altered by presynchronization treatments before the 7-day CO-Synch + CIDR program, but pregnancy per TAI was not improved.  相似文献   

5.
《Theriogenology》2016,86(9):1555-1561
A pilot experiment was designed to test the hypothesis that administration of PGF before progestin treatment would allow for a reduced duration of progestin treatment in a long-term progestin-based estrus synchronization protocol. A modified presynchronization treatment was compared with a standard long-term controlled internal drug release (CIDR) treatment, and treatments were compared on the basis of ovarian follicular dynamics, estrous response rate, synchrony of estrus expression, and pregnancy rates resulting from timed artificial insemination (TAI) in postpartum beef cows. Estrous was synchronized for 85 cows, with cows assigned to one of two treatments based on age, days postpartum, and body condition score. Cows assigned to the 14-day CIDR-PG protocol received a CIDR insert (1.38 g progesterone) on Day 0, CIDR removal on Day 14, and administration of PGF (25 mg im) on Day 30. Cows assigned to the 9-day CIDR-PG protocol received PGF concurrent with CIDR insertion on Day 5, PGF concurrent with CIDR removal on Day 14, and administration of PGF on Day 30. In both treatments, split-time AI was performed based on estrous response. At 72 hours after PGF (Day 33), cows having expressed estrus received TAI; cows that failed to express estrus by 72 hours received TAI 24 hours later (96 hours after PGF on Day 34), with GnRH (100 μg im) administered to nonestrous cows. Estrus-detection transmitters were used from CIDR removal until AI to determine onset time of estrus expression both after CIDR removal and after PGF. Ovarian ultrasonography was performed at CIDR removal on Day 14, PGF on Day 30, and AI on Days 33 or 34. At CIDR removal on Day 14, diameter of the largest follicle present on the ovary was similar between treatments. The proportion of cows expressing estrus after CIDR removal tended to be higher (P = 0.09) among cows assigned to the 9-day CIDR-PG treatment (93%; 40 of 43) than among cows assigned to the 14-day CIDR-PG treatment (81%; 34 of 42). After PGF, a significantly higher proportion (P = 0.02) of cows expressed estrus after synchronization with the 9-day CIDR-PG treatment (91%; 39 of 43) than the 14-day CIDR-PG treatment (69%; 29 of 42). Consequently, pregnancy rate to TAI tended to be increased (P = 0.09) among the 9-day CIDR-PG treatment (76.7%; 33 of 43) compared with the 14-day CIDR-PG treatment (59.5%; 25 of 42). In summary, a long-term CIDR-based estrous synchronization protocol for postpartum beef cows was enhanced through administration of PGF at CIDR insertion and CIDR removal.  相似文献   

6.
Yearling Bos indicus × Bos taurus heifers (n = 410) from three locations, were synchronized with either the Select Synch/CIDR+timed-AI (SSC+TAI) or 7-11+timed-AI (7-11+TAI) treatments. On Day 0 of the experiment, within each location, heifers were equally distributed to treatments by reproductive tract score (RTS; Scale 1-5: 1 = immature, 5 = estrous cycling) and body condition score. The 7-11+TAI treatment consisted of melengestrol acetate (0.5 mg/head/d) from Days 0 to 7, with PGF (25 mg im) on Day 7, GnRH (100 μg im) on Day 11, and PGF (25 mg im) on Day 18. The SSC+TAI heifers received the same carrier supplement (without MGA) from Days 0 to 7, and on Day 11 they were given 100 μg GnRH and an intravaginal CIDR (containing 1.38 g progesterone). The CIDR were removed on Day 18, concurrent with 25 mg PGF im For both treatments, estrus was visually detected for 1 h twice daily (0700 and 1600 h) for 72 h after PGF, with AI done 6 to 12 h after a detected estrus. Non-responders were timed-AI and received GnRH (100 μg im) 72 to 76 h post PGF. The 7-11+TAI heifers had a greater (P < 0.05) estrous response (55.2 vs 41.9%), conception rate (47.0 vs 31.3%), and synchronized pregnancy rate (33.5 vs 24.8%) compared to SSC+TAI heifers, respectively. Heifers exhibiting estrus at 60 h (61.7%) had a greater (P < 0.05) conception rate compared to heifers that exhibited estrus at ≤ 36 (35.3%), 48 (31.6%), and 72 h (36.2%), which were similar (P > 0.05) to each other. As RTS increased from ≤ 2 to ≥ 3, estrous response, conception rate, synchronized pregnancy rate, and 30 d pregnancy rate all increased (P < 0.05), irrespective of synchronization treatment. In conclusion, the 7-11+TAI treatment yielded greater synchronized pregnancy rates compared to SSC+TAI treatment in yearling Bos indicus × Bos taurus heifers.  相似文献   

7.
Poor estrus expression and anestrus decrease the reproductive efficiency of buffaloes. The objective of this study was to determine whether the addition of equine chorionic gonadotropin (eCG) to an estrous synchronization protocol and timed insemination could improve ovulation and pregnancy rates of anestrous buffalo cows under tropical conditions. The study population comprised 65 lactating Murrah buffalo cows which were assigned to CIDR (n = 33) or CIDR + eCG (n = 32) treatment groups. Cows in the CIDR group were fitted for 8 d with a controlled intravaginal drug release (CIDR) device containing 1.38 g progesterone, received GnRH (10 μg i.m.) on D 0, PGF (750 μg i.m.) on D 7, and GnRH (10 μg i.m.) on D 9; whereas cows in the CIDR + eCG group received the same treatment plus eCG (500 IU, i.m.) at the time of PGF treatment. All cows were inseminated 16-20 h after the second GnRH treatment. Blood samples were obtained 10 d before the start of synchronization treatment (Day -10) and at the onset of treatment (Day 0). Cows with plasma progesterone concentrations <1 ng/mL recorded in both samples (Low-Low levels of P4) were classified as non-cyclic cows. Similarly, when either one or both of the sample pair contained concentrations of serum progesterone ≥1 ng/mL (High-High, Low-High, or High-Low levels of P4), the buffaloes were classified as cyclic cows. Ovulation rate, defined as the number of buffaloes with at least one corpus luteum 10 days after insemination, was significantly higher (P = 0.018) in the CIDR + eCG (84.4%) cows than in the CIDR cows (57.6%). Pregnancy rate was numerically lower in CIDR (27.3%) than CIDR + eCG (40.6%) cows, though differences were not significant (P = 0.25). Pregnancy rates for CIDR + eCG cows were similar to that of cows inseminated after natural estrus (40.9%; 29/71). In the non-cyclic animals, higher ovulation rates (P = 0.026) were recorded for the CIDR + eCG (81%) than for the CIDR cows (47.4%). Our results indicate that the addition of eCG to a progesterone-based estrous synchronization regimen substantially improves the ovulation rate in non-cyclic buffaloes. When this treatment is followed by timed AI, pregnancy rates achieved in anestrous buffaloes, whether cyclic and non-cyclic, may approach the rates observed in cows inseminated at natural estrus.  相似文献   

8.
The objectives of Experiment 1 were to determine a dose of eCG that would increase total luteal volume and plasma progesterone (P4) concentration on estrous cycle Day 7 in cows. The objectives of Experiment 2 were to determine the effects of treating embryo recipient lactating Holstein cows with eCG on pregnancy per embryo transfer (P/ET). In Experiment 1, lactating dairy cows at 63 ± 3 d postpartum (DIM) received no treatment (control, n = 10), or 600 (eCG6, n = 19), or 800 (eCG8, n = 19) IU of eCG 2 d after the start of the ovulation-synchronization protocol, Day -8 (Day -10 GnRH, Day -3 PGF, Day 0 GnRH). Blood was sampled on Days -10, -8, -3, 0, 7, and 14 for P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, 0, and 7. In Experiment 2, lactating dairy cows were paired according to parity and previous insemination (0 or > 1 insemination) and assigned to receive 800 IU of eCG (eCG8, n = 152) 2 d after the start of the ovulation-synchronization protocol (Day -10 GnRH, Day -3 PGF, Day 0 GnRH) or to receive no treatment (control, n = 162). Blood was sampled on Days -10, -3, 0, 7, and 14 for determination of P4 concentration. Ovaries were examined by ultrasound on Days -10, -3, and 7, and cows with a CL > 20 mm in diameter on Day 7 received an embryo. In Experiment 1, P4 concentration on Day 7 was higher (P < 0.05) for eCG8 cows (2.3 ± 0.3 ng/mL) compared with control (1.2 ± 0.3 ng/mL) and eCG6 (1.1 ± 0.3 ng/mL) cows. In Experiment 2, eCG8 primiparous cows had more (P < 0.01) follicles > 10 mm on Day -3 compared with control primiparous cows (2.5 ± 0.9 vs 1.7 ± 0.5 mm), but multiparous control and eCG8 cows did not differ. A larger (P = 0.03) percentage of control cows received an embryo (87.5 vs 79.1%) compared with eCG8 cows. Among cows that received an embryo, total luteal volume on Day 7 was affected (P = 0.05) by treatment (eCG8 = 8.3 ± 0.4 cm3, control = 6.2 ± 0.4 cm3), but P4 concentration on Day 7 did not differ significantly between treatments. The percentage of cows pregnant 53 d after ET (overall, 24.2%) was not significantly different between control and eCG8 cows. In the current study, no differences in P/ET were observed between control and eCG8 cows and treatment with eCG increased the percentage of cows with asynchronous estrous cycle.  相似文献   

9.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

10.
The objective of this study was to determine the effects of progesterone and cloprostenol (a PGF analogue) on ovarian follicular development and ovulation in prepubertal heifers. In Experiment 1, crossbred Hereford heifers (Bos taurus; 10 to 12 mo old, 255 to 320 kg) were assigned randomly to three groups and given (1) an intravaginal progesterone-releasing insert (CIDR; P group, n = 13); (2) a CIDR plus 500 μg cloprostenol im (PGF analogue) at CIDR removal (PPG group, n = 11); or (3) no treatment (control group, n = 14). The CIDR inserts were removed 5 d after follicular wave emergence. Progesterone-treated heifers (P and PPG groups) had a larger dominant follicle than that of the control group (P = 0.01). The percentage ovulating was highest in the PPG group (8 of 11, 73%), intermediate in the P group (4 of 13, 31%), and lowest in the control group (1 of 14, 7%; P < 0.02). In Experiment 2, 16 heifers (14 to 16 mo old, 300 to 330 kg) were designated to have follicular wave emergence synchronized with either a CIDR and 1 mg estradiol benzoate im (EP group, n = 8) on Day 0 (beginning of experiment) or by transvaginal ultrasound-guided ablation of all follicles ≥5 mm on Day 3 (FA group, n = 8). On Day 7, CIDRs were removed in the EP group, and all heifers received 500 μg cloprostenol im. Ovulation was detected in 6 of 8 heifers (75%) in both groups. In summary, the use of PGF with or without exogenous progesterone treatment increased the percentage ovulating in heifers close to spontaneous puberty.  相似文献   

11.
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of an intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or on Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F (PGF; 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF was administered on Day 7 than on Day 9, but in anestrous cows, no effects of time of the PGF treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility.  相似文献   

12.
The objective was to investigate the influence of corpora lutea physical and functional characteristics on pregnancy rates in bovine recipients synchronized for fixed-time embryo transfer (FTET). Crossbred (Bos taurus taurus × Bos taurus indicus) nonlactating cows and heifers (n = 259) were treated with the following protocol: 2 mg estradiol benzoate (EB) plus an intravaginal progesterone device (CIDR 1.9 g progesterone; Day 0); 400 IU equine chorionic gonadotropin (eCG; Day 5); prostaglandin F (PGF) and CIDR withdrawal (Day 8); and 1 mg EB (Day 9). Ovarian ultrasonography and blood sample collections were performed on Day 17. Of the 259 cattle initially treated, 197 (76.1%) were suitable recipients; they received a single, fresh, quality grade 1 or 2 in vivo-derived (n = 90) or in vitro-produced (n = 87) embryo on Day 17. Pregnancy rates (23 d after embryo transfer) were higher for in vivo-derived embryos than for in vitro-produced embryos (58.8% vs. 31.0%, respectively; P < 0.001). Mean (±SD) plasma progesterone (P4) concentration was higher in cattle that became pregnant than that in nonpregnant cattle (5.2 ± 5.0 vs. 3.8 ± 2.4 ng/mL; P = 0.02). Mean pixel values (71.8 ± 1.3 vs. 71.2 ± 1.1) and pixel heterogeneity (14.8 ± 0.3 vs. 14.5 ± 0.5) were similar between pregnant and nonpregnant recipients (P > 0.10). No significant relationship was detected between pregnancy outcome and plasma P4, corpus luteum area, or corpus luteum echotexture. Embryo type, however, affected the odds of pregnancy. In conclusion, corpus luteum-related traits were poor predictors of pregnancy in recipients. The type of embryo, however, was a major factor affecting pregnancy outcome.  相似文献   

13.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

14.
Prepubertal Bos indicus heifers (n = 774) were submitted to an E2/P4-based timed artificial insemination (TAI) protocol at three different intervals after induction of their pubertal ovulation by insertion of an intravaginal progesterone (P4) device for 12 days. Heifers were randomly assigned to start the TAI protocol at 10 (group 10; n = 253), 12 (group 12; n = 265), or 14 (group 14; n = 256) days after the P4 device was removed. The TAI protocol consisted of the following: insertion of intravaginal device containing P4 (Controlled internal drug release [CIDR]; previously used twice for 9 days each) + estradiol benzoate (2 mg) on Day 0, CIDR withdrawal + estradiol cypionate (0.5 mg) and PGF2α (12.5 mg) on Day 9, and TAI on Day 11. A subgroup of heifers (n = 472) was evaluated by ultrasound on Days 9 and 11 to evaluate the ovaries and to determine P4 concentrations on Day 9. On Day 9, more (P < 0.05) CLs were present, and follicular diameter was smaller (P < 0.05) for group 10 than for groups 12 and 14 (38.4%, 29.3%, and 23.3% with CL and 9.4 ± 0.1, 9.9 ± 0.1, and 9.8 ± 0.1 mm diameter, respectively), but P4 concentrations did not differ (P > 0.1) between treatments (2.4 ± 0.06 ng/mL). Follicular diameter at TAI (11.08 ± 0.09 mm) and ovulation rate (88.4%) did not differ between treatments (P > 0.1). However, conception and pregnancy rates for all heifers were greater (P < 0.05) in group 12 (50.4% and 45.5%, respectively) than in group 10 (38.2% and 33.7%, respectively), with group 14 intermediate to other treatments (45.6% and 40.6%, respectively). The final pregnancy rate did not differ between treatments (80.9%). In conclusion, a 12-day interval from the end of the puberty induction protocol to the start of the TAI protocol resulted in greater conception and pregnancy rates in prepubertal Nellore heifers.  相似文献   

15.
A study was conducted to determine the effect of suprabasal plasma concentrations of progesterone on the release of prostaglandin F (PGF) at luteolysis and oestrus. Heifers received silicone implants containing 2.5 (n = 4), 5 (n = 4), 6 (n = 3), 7.5 (n = 3), 10 (n = 4), or 15 (n = 3) g of progesterone, or an empty implant (controls, n = 4) between Days 8 and 25 post ovulation. Blood was collected frequently between Days 14 and 28 and assayed for progesterone and 15-ketodihydroprostaglandin F. Basal progesterone concentrations in control heifers did not differ from those in heifers with 2.5- or 5-g implants and remained around 0.4−0.5 nmol l−1 until ovulation in all three groups. In the heifers treated with 6–15 g of progesterone, basal concentrations were maintained at higher (P < 0.05) levels compared with those in the controls, ranging from 0.8 to 1.6 nmol 1−1. The effect of these elevated progesterone levels was to delay ovulation by prolonging the growth of the ovulatory follicle, which continued growing until the implant was removed. In all experimental groups, the first significant increase of the PGF metabolite occurred between Days 15.3 and 16.3 (P > 0.05) and was associated with the onset of a decrease in progesterone concentrations, which had reached levels below 3 nmol 1−1 by Days 17.4−19.1. PGF metabolite peaks associated with luteolysis were frequent until Day 20. In the period from Day 20 until implant removal, sporadic peaks were observed, ranging in number from 1.0 ± 1.2 (mean ± SEM) in the control group to 3.0 ± 1.4 peaks in the heifers treated with 7.5 g of progesterone (P > 0.05). The number of PGF metabolite peaks during that period was higher (P < 0.05) in heifers treated with 10 and 15 g than in controls. A positive correlation was found between the basal concentration of progesterone and the number of PGF peaks after luteolysis (r = 0.54; P < 0.01). Plasma progesterone concentrations above approximately 1.4 nmol l−1 were able to maintain the release of PGF until the progesterone implants were removed and plasma levels decreased to basal values. These heifers had a preovulatory PGF release pattern resembling that found in repeat breeder heifers.  相似文献   

16.
Two experiments were conducted to test the hypothesis that the 5 d Co-Synch + CIDR (Controlled Internal Drug Release insert containing progesterone) protocol could be applied as an efficient timed AI (TAI) protocol in dairy heifers, and that treatment with flunixin meglumine (FM) during the period of CL maintenance would increase pregnancy per TAI (P/TAI) and late survival of embryos. Objectives were: 1) in Experiment 1, to compare P/TAI with the 5 d Co-Synch + CIDR protocol to a PGF/GnRH protocol; and 2) in Experiment 2, to determine if FM administered 15.5 and 16 d after first TAI would increase P/TAI, using the 5 d Co-Synch + CIDR protocol with a new or previously used (5 d) CIDR insert.In Experiment 1, 248 heifers were assigned randomly to either the PGF/GnRH protocol (n = 120) or the 5 d Co-Synch + CIDR protocol (n = 128). Pregnancy per TAI did not differ between the 5 d Co-Synch + CIDR protocol (53.1%) and the PGF/GnRH protocol (45.8%; P = 0.22). In Experiment 2, 325 heifers synchronized with the 5 d Co-Synch + CIDR protocol were assigned randomly to receive two injections of FM (FM group; n = 158) at 15.5 and 16 d after TAI, or to remain as untreated controls (n = 165). Pregnancy per TAI in Experiment 2 was 59.4 and 59.5% at 45 d for control and FM groups, respectively, with no differences between groups (P = 0.83). The 5 d Co-Synch + CIDR protocol resulted in an acceptable P/TAI in dairy heifers. However, FM did not improve P/TAI in dairy heifers.  相似文献   

17.
The objectives were to evaluate the effects of equine chorionic gonadotropin (eCG) supplementation (with or without eCG) and type of ovulatory stimulus (GnRH or ECP) on ovarian follicular dynamics, luteal function, and pregnancies per AI (P/AI) in Holstein cows receiving timed artificial insemination (TAI). On Day 0, 742 cows in a total of 782 breedings, received 2 mg of estradiol benzoate (EB) and one intravaginal progesterone (P4) insert (CIDR). On Day 8, the CIDR was removed, and all cows were given PGF2α and assigned to one of four treatments in a 2 × 2 factorial arrangement: (1) CG: GnRH 48 h later; (2) CE: ECP; (3) EG: eCG + GnRH 48 h later; (4) EE: eCG + ECP. There were significant interactions for eCG × ovulatory stimulus and eCG × BCS. Cows in the CG group were less likely (28.9% vs. 33.8%; P < 0.05) to become pregnant compared with those in the EG group (odds ratio [OR] = 0.28). There were no differences in P/AI between CE and EE cows (30.9% vs. 29.1%; OR = 0.85; P = 0.56), respectively. Thinner cows not receiving eCG had lower P/AI than thinner cows receiving eCG (15.2% vs. 38.0%; OR = 0.20; P < 0.01). Treatment with eCG tended to increase serum progestesterone concentrations during the diestrus following synchronized ovulation (P < 0.10). However, the treatment used to induce ovulation did not affect CL volume or serum progesterone concentrations. In conclusion, both ECP and GnRH yielded comparable P/AI. However, eCG treatment at CIDR removal increased pregnancy rate in cows induced to ovulate with GnRH and in cows with lower BCS.  相似文献   

18.
The objectives were to evaluate pregnancy per AI (P/AI) of dairy cows subjected to the 5-day timed AI protocol under various synchronization and luteolytic treatments. Cows were either presynchronized or received supplemental progesterone during the synchronization protocol, and received a double luteolytic dose of PGF, either as one or two injections. In Experiment 1, dairy cows (n = 737; Holstein = 250, Jersey = 80, and crossbred = 407) in two seasonal grazing dairy farms were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement. The day of AI was considered study Day 0. Half of the cows were presynchronized (G6G: PGF on Day −16 and GnRH on Day −14) and received the 5-day timed AI protocol using 1 mg of cloprostenol, either as a single injection (G6G-S: GnRH on Day −8, PGF on Day −3, and GnRH + AI on Day 0) or divided into two injections of 0.5 mg each (G6G-T: GnRH on Day −8, PGF on Day −3 and −2, and GnRH + AI on Day 0). The remaining cows were not presynchronized and received a controlled internal drug-release (CIDR) insert containing progesterone from GnRH to the first PGF injection of the 5-day timed AI protocol, and 1 mg of cloprostenol either as a single injection on Day -3 (CIDR-S) or divided into two injections of 0.5 mg each on Days -3 and -2 (CIDR-T). Ovaries were examined by ultrasonography on Days −8 and −3 and plasma progesterone concentrations were determined on Days −3 and 0. In Experiment 2, 655 high-producing Holstein cows had their estrous cycle presynchronized with PGF at 46 ± 3 and 60 ± 3 days postpartum and were randomly assigned to receive 50 mg of dinoprost during the 5-day timed AI protocol, either as a single injection or divided into two injections of 25 mg each. Pregnancies per AI were determined on Days 35 and 64 after AI in both experiments. In Experiment 1, presynchronization with G6G increased the proportion of cows with a CL on Day −8 (80.6 vs. 58.8%), ovulation to the first GnRH of the protocol (64.2 vs. 50.2%), and the presence (95.6 vs. 88.4%) and number (1.79 vs. 1.30) of CL at PGF compared with CIDR cows. Luteolysis was greater for two injections compared to a single PGF injection (two PGF = 95.9 vs. single PGF = 72.2%), especially in presynchronized cows (G6G-T = 96.2 vs. G6G-S = 61.7%). For cows not presynchronized, two PGF injections had no effect on P/AI (CIDR-S = 30.2 vs. CIDR-T = 34.3%), whereas for presynchronized cows, it improved P/AI (G6G-S = 28.7 vs. G6G-T = 45.4%). In Experiment 2, the two-PGF injection increased P/AI on Days 35 (two PGF = 44.5 vs. single PGF = 36.4%) and 64 (two PGF = 40.3% vs. single PGF = 32.6%) after AI. Presynchronization and dividing the dose of PGF (either cloprostenol or dinoprost) into two injections increased P/AI in lactating dairy cows subjected to the 5-day timed AI protocol.  相似文献   

19.
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean ± SEM 166.24 ± 3.27 d postpartum, yielding 36.8 ± 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR®) with 1.9 g of progesterone + GnRH on Day -10, CIDR® withdrawal + PGF2α on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; nTAI = 180; nTET = 260); or 2) a CIDR® insert + 2 mg estradiol benzoate on Day -10, PGF2α on Day -3, CIDR® withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; nTAI = 174; nTET = 269). Cows were subsequently randomly assigned to receive either TAI on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 ± 0.15 vs 2.29 ± 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/529] vs 29.7% [105/354]; P < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAI: 30.5% [55/180] vs 28.7% [50/174]; TET: 44.2% [115/260] vs 43.9% [118/269]) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo.  相似文献   

20.
The objective was to compare two resynchronization programs; one that used a blood-based ELISA for pregnancy-associated glycoproteins (PAG) for pregnancy diagnosis so that non-pregnant cows were re-inseminated at 28 d after first TAI, and another that used transrectal ultrasonography for pregnancy diagnosis so that non-pregnant cows were re-inseminated at 35 d after first TAI. The PAG_resynch cows (n = 103) began CIDR-Ovsynch resynchronization on Day 18 after first TAI (Day 0). On Day 25, the CIDR was removed and pregnancy diagnosis with a PAG ELISA was performed. If a cow was not pregnant on Day 25, she was treated with PGF, treated with GnRH 2 d later (Day 27), and TAI on Day 28. Control cows (n = 99) were observed for estrus until Day 25, when they began an identical CIDR-Ovsynch program with pregnancy diagnosis by transrectal ultrasonography on Day 32. If a cow was not pregnant on Day 32, then she was treated with PGF, treated with GnRH 2 d later (Day 34), and TAI on Day 35. There was no difference in pregnancy per AI (P/AI) for either group at first or second insemination. For cows without pregnancy loss, the interval between first and second (P < 0.001) or second and third (P < 0.016) TAI was shorter for PAG_resynch cows compared with Control cows. The interval between first and second or second and third TAI was not different if pregnancy loss cows were included in the analysis. Plasma progesterone concentrations were similar at PGF treatment, and plasma estradiol concentrations increased similarly after PGF treatment for PAG_resynch and Control cows. In conclusion, the 28 d CIDR-Ovsynch resynchronization protocol was comparable to a 35 d CIDR-Ovsynch resynchronization protocol that also included estrus detection. Shortened resynchronization protocols that do not require estrus detection may improve reproductive efficiency in dairy cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号