首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A disputable problem is discussed, which cavity in the Amniota embryo corresponds to blastocoele. General morphophysiological characteristics of the embryos at the blastula stage are presented. Basing on comparative survey of the data on origin, functions and fate of the blastocoele in development of vertebrate embryos, the notion is substantiated that the subembryonal cavity corresponds to blastocoele in Amniota. A critical analysis is given to another interpretation, according to which blastocoele in Amniota is a cleft between epi- and hypoblast. Ideas on homology criteria are explained, with a reference to initial stages of the embryonal development. Since prospective importance of blastocoele in low Chordata (convertion into gastrocoele) is different, a conclusion is made about incomplete homology of blastocoele in the animals mentioned. A hypothesis is put forward on pathways of changes of prospective importance of blastocoele in the vertebrate phylogenesis, in connection with their transition to meroblastic development. The problem on changes in assimilation of yolk by the vertebrate embryo at transition from holoblastic to meroblastic development is discussed from comparative point of view, as well as on nature of yolk entoderm in Amniota and Anamnia.  相似文献   

2.
The nucleocytoplasmic ratio of fertilized mouse eggs was manipulated by removing or injecting cytoplasm by micropipette, and bisection of denuded eggs to obtain both pronuclei in one half of the eggs cytoplasm. The experimental eggs were capable of cleavage to the morula stage and, in some instances, developed to the blastocyst stage similar to unmanipulated eggs. The removal of large quantities of cytoplasm by micropipette and injecting them into a recipient egg did not provide sufficient numbers of viable eggs, whereas transfer of smaller quantities (about a quarter of the cytoplasm) was less deleterious, at least for recipient eggs. However, the alteration of the nucleocytoplasmic ratio by this method was not of the correct magnitude for the purpose of this experiment. Therefore, bisection was the preferred method whereby the nucleocytoplasmic ratio was doubled. This resulted in both pronuclei residing in one half of the egg's cytoplasm. Half eggs with one pronucleus (haploid) but retaining a nucleocytoplasmic ratio similar to unmanipulated control eggs served as additional controls for the bisection experiments. Protein synthesis was analysed by two-dimensional gel electrophoresis, showing that the 2-cell- and 4-cell-stage bisected embryos with double and normal nucleocytoplasmic ratio expressed equivalent protein synthesis patterns as control embryos of the same stage. Likewise, the stage-specific surface antigen SSEA-1 did not appear before the 6- to 8-cell stage. Also in cytoplasm transfer experiments, there was no indication that altering the nucleocytoplasmic ratio in either direction changed the timing of stage-specific gene expression. These results support the idea that stage-specific gene activity during early mouse cleavage might proceed in parallel to DNA replication cycles and is independent of the nucleocytoplasmic ratio.  相似文献   

3.
The morphogenetic processes of coelomic pouch (CP) formation in starfish embryos that were experimentally dissociated and induced to undergo reconstruction were studied. An analysis of these embryos randomly chosen from several cultures showed that CP always form on either side of the esophagus, even though the CP formation can differ in timing of initiation and duration, and can vary in number and size from embryo to embryo. Successive observations of CP formation in living embryos revealed two distinct sequences of CP development that were accompanied by different appearances of the blastocoele. These processes were named 'enterocoelic-like' and 'schizocoelic-like' CP formation. The former resembled normal development and occurred in embryos with a transparent blastocoele. The latter was characterized by the aggregation and epithelialization of mesenchyme-like cells on either side of the esophagus and was observed in embryos possessing a cloudy blastocoele. In a few embryos, both types of CP formation were seen in the same individual ('mosaic type' CP formation). Thick sections of embryos possessing a cloudy blastocoele revealed that aggregates of mesenchyme-like cells undergoing CP formation directly contact the developing esophagus. Together, these data demonstrate flexibility in the morphogenetic processes that regulate CP formation, and suggest that positional cues in the esophagus regulate the placement of CP.  相似文献   

4.
In Xenopus and Drosophila, the nucleocytoplasmic ratio controls many aspects of cell-cycle remodeling during the transitory period that leads from fast and synchronous cell divisions of early development to the slow, carefully regulated growth and divisions of somatic cells. After the fifth cleavage in sea urchin embryos, there are four populations of differently sized blastomeres, whose interdivision times are inversely related to size. The inverse relation suggests nucleocytoplasmic control of cell division during sea urchin development as well. To investigate this possibility, we developed a mathematical model based on molecular interactions underlying early embryonic cell-cycle control. Introducing the nucleocytoplasmic ratio explicitly into the molecular mechanism, we are able to reproduce many physiological features of sea urchin development.  相似文献   

5.
6.
7.
The present study shows that there is communication between reaggregated asynchronous cleavage stage blastomeres that regulates blastocoele formation. Individual blastomeres from eight-cell murine embryos were transferred to empty zonae pellucidae, intact two-cell embryos, or enucleated two-cell embryos, and were examined over a period of 75 hours for development of cavitation. It was found that the isolated blastomeres cavitated concurrently with intact control eight-cell embryos, while intact control two-cell embryos cavitated 24 hours later. However, the embryos resulting from combining a two-cell embryo and a blastomere from an eight-cell embryo cavitated at a time in between the eight- and two-cell controls.  相似文献   

8.
9.
Morphological signs of injury and regeneration following vitrification and warming of bovine embryos were studied by light and electron microscopy. In-vitro-produced Day 7 expanded blastocysts (Day 0 = day of insemination) were vitrified by a two-step equilibration method using ethylene glycol and dimethyl sulphoxide as cryoprotectants. Thawing was performed by in-straw direct rehydration, followed by in vitro culture on a granulosa cell monolayer. Embryos were processed for transmission electron microscopy immediately after warming (0 hr) as well as after 4 hr or 24 hr of culture following warming. A control group of unfrozen embryos was also processed. At 0 hr after warming, except for a rapid collapse of the blastocoele, only minor changes were detectable by stereomicroscope. However, at the ultrastructural level, signs of extensive injury were seen, including a general distension or shrinkage of mitochondria, disintegration of cell adhesions between adjacent trophoblastic cells, and complete rupture of some cells. At 4 hr, stereomicroscopic investigation revealed collapsed blastocoele and a darkened granular appearance of the cell mass. At the ultrastructural level, signs of regeneration were also observable: cells with minor injuries were re-assembled in a central area forming a small blastocoele, cell adhesion structures were re-established, and damage of mitochondria was less severe. The majority of irreversibly damaged cells or cell debris was accumulated in the perivitelline space. At 24 hr, stereomicroscopic investigation of surviving blastocysts showed no signs of the previous injury. At the ultrastructural level, cellular debris in the perivitelline space and some degenerated cells in the blastocoele were the only signs of previous injuries. In conclusion, ultrastructural investigation revealed unexpectedly extensive damage followed by a rapid regeneration and reorganization of the embryonic structure. Mol. Reprod. Dev. 48:9–17, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
11.
In vitro production of free estrogens and estrogen conjugates by intact Day 12.5, 13.5 and 14.5 equine embryos was measured at 2-h intervals over a 24-h culture period. Production of free estrogens was higher for Day 14.5 than Day 12.5 embryos. Differences in production of conjugated estrogens were not significant, but a trend toward increased production with increased age of embryo was apparent. No trend toward increased free and conjugated estrogen production per cell was observed with age. Embryo diameter and number of cells increased with age but varied considerably within groups. The amount of free and conjugated estrogens measured in blastocoelic fluid did not decrease over the 24-h culture period, suggesting that estrogens detected in culture medium were produced by the embryo and not the result of leakage of maternal estrogen from the blastocoele. The results of this study support previous results that estrogen production increases with development of equine embryos. This increase in estrogen production appears to be more closely associated with the diameter of the embryo, and hence its number of cells, than with increased intracellular steroidogenic activity.  相似文献   

12.
Gastrulation in Caenorhabditis elegans has been described by following the movements of individual nuclei in living embryos by Nomarski microscopy. Gastrulation starts in the 26-cell stage when the two gut precursors, Ea and Ep, move into the blastocoele. The migration of Ea and Ep does not depend on interactions with specific neighboring cells and appears to rely on the earlier fate specification of the E lineage. In particular, the long cell cycle length of Ea and Ep appears important for gastrulation. Later in embryogenesis, the precursors to the germline, muscle and pharynx join the E descendants in the interior. As in other organisms, the movement of gastrulation permit novel cell contacts that are important for the specification of certain cell fates.  相似文献   

13.
Cell cycle checkpoints that are engaged in response to damaged and unreplicated DNA may serve additional, constitutive functions. In the developing Xenopus laevis embryo, the checkpoint kinase Chk1 is transiently activated at the midblastula transition (MBT), a period of extensive cell cycle remodeling including the acquisition of cell cycle checkpoints. The timing of many cell cycle remodeling events at the MBT, such as the lengthening of cell cycles, depends upon a critical nucleocytoplasmic (N/C) ratio. However, other events, including the degradation of maternal cyclin E, do not depend upon the N/C ratio, and are regulated by an autonomous developmental timer. To better understand what regulates Chk1 activation at the MBT, embryos were treated with aphidicolin, at different developmental times and for different lengths of time, to reduce the DNA content at the MBT. Chk1 was activated at the MBT in these embryos establishing that Chk1 activation occurs independently of the N/C ratio. Cdc25A is normally phosphorylated by Chk1 at the MBT and then degraded. The degradation of Cdc25A demonstrated partial dependence on DNA content, suggesting that factors other than Chk1 regulate its degradation. When the cyclin E developmental timer was disrupted with the Cdk2 inhibitor Δ34-Xic1, Chk1 was still activated at the MBT, indicating that activation of Chk1 at the MBT was not directly linked to the cyclin E timer. Conversely, unreplicated or damaged DNA, delayed the degradation of cyclin E at the MBT, indicating that the cyclin E/Cdk2 timer is sensitive to engagement of cell cycle checkpoints.  相似文献   

14.
In gastrulating sea urchin embryos, secondary mesenchyme cells at the tip of the advancing archenteron extend long narrow filopodia which probe the inner surface of the blastocoele wall, rejecting some surface contacts before adhering to other cells. After specific cell adhesions are made, contractions of the filopodia pull the leading tip of the archenteron to the opposite wall of the blastocoele with an accompanying elongation of the archenteron. A study was made of the biochemistry and morphology of the specific adhesions of filopodial extensions by injecting a variety of compounds into the blastocoele of living sea urchin gastrulae and observing their effects on filopodia and cell movements. A number of agents (proteases, lectins) caused specific filopodial detachment and subsequent archenteron regression. Fluorescein-conjugated lectins, including concanavalin A (conA) and wheat germ agglutinin (WGA) exhibited marked specificity of cell surface binding to specific regions (primary mesenchyme cells, blastocoele wall, etc.) of the embryo.  相似文献   

15.
16.
17.
Early development of the urodele amphibian Pleurodeles waltl is accompanied by a process of progressive fibronectin (FN) fibrillogenesis. FN begins to assemble into fibrils on the inner surface of the blastocoele roof at the early blastula stage and progressively forms a complex extracellular matrix. We have analyzed the mechanisms of FN-fibril formation under normal and experimental conditions in vivo with the following probes: iodinated FN, fluorescein-labeled FN, synthetic peptides containing the Arg-Gly-Asp (RGD) cell surface recognition sequence of FN, and polyclonal antibodies against both beta 1 subunit of the amphibian FN receptor and the cytoplasmic domain of beta 1 subunit. We report that in living embryos, exogenous labeled mammalian FN injected into the amphibian blastocoele undergoes FN-fibril formation in spatiotemporal patterns similar to those of endogenous FN. This indicates regulation of fibrillogenesis by the cell surface rather than by changes in the type of FN. Fibrillogenesis is inhibited in a dose-dependent manner both by the GRGDS peptide and monospecific antibodies to amphibian integrin beta 1 subunit. Furthermore, when injected intracellularly into uncleaved embryos or into selected blastomeres, antibodies to the cytoplasmic domain of integrin beta 1 subunit produce a reversible inhibition of FN-fibril formation that follows early cell lineages and cause delays in development. Together, these data indicate that in vivo, the integrin beta 1 subunit and the RGD recognition signal are essential for the proper assembly of FN fibrils in early amphibian development.  相似文献   

18.
At the Xenopus midblastula transition (MBT), cell cycles lengthen, and checkpoints that respond to damaged or unreplicated DNA are established. The MBT is triggered by a critical nucleocytoplasmic (N/C) ratio; however, the molecular basis for its initiation remains unknown. In egg extracts, activation of Chk1 checkpoint kinase requires the adaptor protein Claspin, which recruits Chk1 for phosphorylation by ATR. At the MBT in embryos, Chk1 is transiently activated to lengthen the cell cycle. We show that Xenopus Claspin is phosphorylated at the MBT at both DNA replication checkpoint-dependent and -independent sites. Further, in egg extracts, Claspin phosphorylation depends on a threshold N/C ratio, but occurs even when ATR is inhibited. Not all phosphorylation that occurs at the MBT is reproduced in egg extracts. Our results identify Claspin as the most upstream molecule in the signaling pathway that responds to the N/C ratio and indicate that Claspin may also respond to an independent timer to trigger the MBT and activation of cell cycle checkpoints.  相似文献   

19.
Embryo assessment is currently performed through the analysis of morphology and cleavage rate. Recent studies have sought to identify a correlation between quali-quantitative profiles of small molecules of metabolic interest and the outcome of embryo transfer. Approaches relying on both optical and non-optical spectroscopy have been proposed to non-invasively monitor the embryo culture media. However, the non-invasive approach only offers an indirect strategy to monitor embryos and a turn-around solution to bypass the limits of detection of these analytical techniques. In this paper we pave the way for direct metabolic assessment of embryos through the mass-spectrometry-based analysis of blastocoele fluid, which is withdrawn from the blastocoele cavity prior to cryostorage of blastocysts. We conclude that it is possible to detect most of the metabolites of potential interest right at the very heart of the blastocyst, without disrupting the workflow of a classic laboratory pipeline.  相似文献   

20.
Summary The ultrastructure of mouse blastocysts with nascent and expanded blastocoele is described. In the early blastocyst cells adhere tightly and the blastocoele is often limited at its apex by cells containing a midbody. The expanding blastocyst exhibits a loose cell arrangement due to the presence of intercellular spaces and a cortical layer of filaments develops in cells enclosing the expanded blastocoele. When the blastocoele exceeds 1/2 the embryo diameter desmosomes appear between trophectoderm cells. Possible factors essential for blastocoele formation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号