首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
In 19 anaesthetised cats, the response of vascular bed to increasing perfusion pressure at a constant blood flow perfusion consisted of two phases: a myogenic constriction and a subsequent arterial dilatation. The latter depended on ability of the endothelium to relax the smooth muscle under stress. The findings suggest that the control of the smooth muscle tone by a stress has to fight against the myogenic constriction and thus determines the changes in vascular resistance induced by an increased arterial pressure.  相似文献   

2.
Blood flow velocity is a factor that affects the diameter of arteries. In order to investigate the flow-induced arterial dilatation, the outer diameter of the femoral, common carotid or renal arteries of anaesthetized cats was measured during perfusion of these arteries with blood or plasma-substituting solutions under conditions of stabilized perfusion pressure. It has been shown that, whatever the perfusate, blood or a substituent, an increase in flow makes the artery to dilate. Consequently, the flow-induced dilatation is not due to any blood-borne humoral factor. As an increase in the solution's viscosity causes dilatation even at constant flow-rate and pressure in the artery, the effect is to be ascribed to the ability of the vascular wall to perceive shear stress. As far as removal of endothelium eliminates the dilatation evoked by increasing flow or fluid viscosity, it may be concluded that the flow-induced dilatation is due to the sensitivity to shear stress of the endothelium.  相似文献   

3.
In splenectomized dogs swimming causes a stronger vasoconstriction in the kidney than treadmill running. Renal blood flow measured by electromagnetic flow probes decreased by 10% during treadmill running and by 37% during swimming. The renal perfusion remained low during 30 min after both running and swimming. Arterial pressure increased during running and during swimming. Phenoxybenzamine, an alpha-adrenergic blocking agent, practically abolished the changes in renal perfusion induced by exercise, but not those in arterial pressure. The changes in renal blood flow and arterial pressure were stronger than those found in a previous study in non-splenectomized dogs. We conclude that in splenectomized dogs sympathetic and adrenomedullary response during exercise is increased resulting in a stronger renal vasoconstriction and a more pronounced increase in arterial pressure, than in intact dogs.  相似文献   

4.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   

5.
Skeletal muscle blood flow and vascular conductance are influenced by numerous factors that can be divided into two general categories: central cardiovascular control mechanisms and local vascular control mechanisms. Central cardiovascular control mechanisms are thought to be designed primarily for the maintenance of arterial pressure and central cardiovascular homeostasis, whereas local vascular control mechanisms are thought to be designed primarily for the maintenance of muscle homeostasis. To support the high metabolic rates that can be generated during muscle contraction, skeletal muscle has a tremendous capacity to vasodilate and increase oxygen and nutrient delivery. During whole body dynamic exercise at maximal oxygen consumption (VO2 max), the skeletal muscle receives 85-90% of cardiac output. Yet despite receiving such a large fraction of cardiac output during high-intensity exercise, a vasodilator reserve remains with the potential to produce further elevations in skeletal muscle vascular conductance and blood flow. However, because maximal cardiac output is reached during exercise at VO2 max, further elevations in muscle vascular conductance would produce a fall in arterial pressure. Therefore, limits on muscle perfusion must be imposed during whole body exercise to prevent such drops in pressure. Effective arterial pressure control in response to a potentially hypotensive challenge during high-intensity exercise occurs primarily through reflex-mediated increases in sympathetic nerve activity, which are capable of modulating vasomotor tone of the skeletal muscle resistance vasculature. Thus skeletal muscle vascular conductance and perfusion are primarily mediated by local factors at rest and during exercise, but other centrally mediated control systems are superimposed on the dominant local control mechanisms to provide an integrated regulation of both arterial pressure and skeletal muscle vascular conductance and perfusion during whole body dynamic exercise.  相似文献   

6.
The control of renal medullary perfusion and the impact of alterations in medullary blood flow on renal function have been topics of research interest for almost four decades. Many studies have examined the vascular architecture of the renal medulla, the factors that regulate renal medullary blood flow, and the influence of medullary perfusion on sodium and water excretion and arterial pressure. Despite these studies, there are still a number of important unanswered questions in regard to the control of medullary perfusion and the influence of medullary blood flow on renal excretory function and blood pressure. This review will first address the vascular architecture of the renal medulla and the potential mechanisms whereby medullary perfusion may be regulated. The known extrarenal and local systems that influence the medullary vasculature will then be summarized. Finally, this review will present an overview of the evidence supporting the concept that selective changes in medullary perfusion can have a potent influence on sodium and water excretion with a long-term influence on arterial blood pressure regulation.  相似文献   

7.
Our previous studies have demonstrated that a decrease in arteriolar diameter that causes endothelial deformation elicits the release of nitric oxide (NO). Thus we hypothesized that cardiac contraction, via deformation of coronary vessels, elicits the release of NO and increases in coronary flow. Coronary flow was measured at a constant perfusion pressure of 80 mmHg in Langendorff preparations of rat hearts. Hearts were placed in a sealed chamber surrounded with perfusion solution. The chamber pressure could be increased from 0 to 80 mmHg to generate extracardiac compression. To minimize the impact of metabolic vasodilatation and rhythmic changes in shear stress, nonbeating hearts, by perfusing the hearts with a solution containing 20 mM KCl, were used. After extracardiac compression for 10 or 20 s, coronary flow increased significantly, concurrent with an increased release of nitrite into the coronary effluent and increased phosphorylation of endothelial NO synthase in the hearts. Inhibition of NO synthesis eliminated the compression-induced increases in coronary flow. Shear stress-induced dilation could not account for this increased coronary flow. Furthermore, in isolated coronary arterioles, without intraluminal flow, the release of vascular compression elicited a NO-dependent dilation. Thus this study reveals a new mechanism that, via coronary vascular deformation, elicited by cardiac contraction, stimulates the endothelium to release NO, leading to increased coronary perfusion.  相似文献   

8.
Basal whole leg blood flow and vascular conductance are reduced in estrogen-deficient postmenopausal compared with premenopausal women. The underlying mechanisms are unknown, but oxidative stress could be involved. We studied 9 premenopausal [23 +/- 1 yr (mean +/- SE)] and 20 estrogen-deficient postmenopausal (55 +/- 1 yr) healthy women. During baseline control, oxidized low-density lipoprotein (LDL), a marker of oxidative stress, was 50% greater in the postmenopausal women (P < 0.001). Basal whole leg blood flow (duplex ultrasound of femoral artery) was 34% lower in the postmenopausal women because of a 38% lower leg vascular conductance (P < 0.0001); mean arterial pressure was not different. Intravenous administration of a supraphysiological dose of the antioxidant ascorbic acid increased leg blood flow by 15% in the postmenopausal women as a result of an increase in leg vascular conductance (both P < 0.001), but it did not affect leg blood flow in premenopausal controls or mean arterial pressure in either group. In the pooled subjects, the changes in leg blood flow and leg vascular conductance with ascorbic acid were related to baseline plasma oxidized LDL (r = 0.46 and 0.53, P < 0.01) and waist-to-hip ratio and total body fat (r = 0.41-0.44, all P < 0.05). Our results are consistent with the hypothesis that oxidative stress contributes to chronic leg vasoconstriction and reduced basal whole leg blood flow in estrogen-deficient postmenopausal women. This oxidative stress-related suppression of leg vascular conductance and blood flow may be linked in part to increased total and abdominal adiposity.  相似文献   

9.
We hypothesized that performanceof exercise during heart failure (HF) would lead to hypoperfusion ofactive skeletal muscles, causing sympathoactivation at lower workloadsand alteration of the normal hemodynamic and hormonal responses. Wemeasured cardiac output, mean aortic and right atrial pressures,hindlimb and renal blood flow (RBF), arterial plasma norepinephrine(NE), plasma renin activity (PRA), and plasma arginine vasopressin(AVP) in seven dogs during graded treadmill exercises and at rest. Incontrol experiments, sympathetic activation at the higher workloadsresulted in increased cardiac performance that matched the increasedmuscle vascular conductance. There were also increases in NE, PRA, and AVP. Renal vascular conductance decreased during exercise, such thatRBF remained at resting levels. After control experiments, HF wasinduced by rapid ventricular pacing, and the exercise protocols wererepeated. At rest in HF, cardiac performance was significantly depressed and caused lower mean arterial pressure, despite increased HR. Neurohumoral activation was evidenced by renal and hindlimb vasoconstriction and by elevated NE, PRA, and AVP levels, but it didnot increase at the mildest workload. Beyond mild exercise, sympathoactivation increased, accompanied by progressive renal vasoconstriction, a fall in RBF, and very large increases of NE, PRA,and AVP. As exercise intensity increased, peripheral vasoconstriction increased, causing arterial pressure to rise to near normal levels, despite depressed cardiac output. However, combined with redirection ofRBF, this did not correct the perfusion deficit to the hindlimbs. Weconclude that, in dogs with HF, the elevated sympathetic activity observed at rest is not exacerbated by mild exercise. However, withheavier workloads, sympathoactivation begins at lower workloads andbecomes progressively exaggerated at higher workloads, thus alteringdistribution of blood flow.

  相似文献   

10.
The autoregulation of blood flow, the maintenance of almost constant blood flow in the face of variations in arterial pressure, is characteristic of many tissue types. Here, contributions to the autoregulation of pressure-dependent, shear stress-dependent, and metabolic vasoactive responses are analyzed using a theoretical model. Seven segments, connected in series, represent classes of vessels: arteries, large arterioles, small arterioles, capillaries, small venules, large venules, and veins. The large and small arterioles respond actively to local changes in pressure and wall shear stress and to the downstream metabolic state communicated via conducted responses. All other segments are considered fixed resistances. The myogenic, shear-dependent, and metabolic responses of the arteriolar segments are represented by a theoretical model based on experimental data from isolated vessels. To assess autoregulation, the predicted flow at an arterial pressure of 130 mmHg is compared with that at 80 mmHg. If the degree of vascular smooth muscle activation is held constant at 0.5, there is a fivefold increase in blood flow. When myogenic variation of tone is included, flow increases by a factor of 1.66 over the same pressure range, indicating weak autoregulation. The inclusion of both myogenic and shear-dependent responses results in an increase in flow by a factor of 2.43. A further addition of the metabolic response produces strong autoregulation with flow increasing by a factor of 1.18 and gives results consistent with experimental observation. The model results indicate that the combined effects of myogenic and metabolic regulation overcome the vasodilatory effect of the shear response and lead to the autoregulation of blood flow.  相似文献   

11.
In the review we analyze a counteraction of two mechanogenic mechanisms that control vascular hydraulic resistance: 1) myogenic response, and 2) ability of vascular endothelium to change the smooth muscle tone in responce to changes of wall shear stress. We showed that this counteraction provides an adequate blood supple of organs, autoregulation of organ blood flow and stability of the vascular system.  相似文献   

12.
Differences in regional vascular conductances in isolated dog lungs   总被引:3,自引:0,他引:3  
The distribution of pulmonary blood flow is influenced by gravity, regional lung expansion, and hypoxic pulmonary vasoconstriction. However, these factors cannot completely explain the three-dimensional distribution of blood flow in the lung. The present study was designed to see whether anatomically related factors could contribute. Regional blood pressure vs. flow curves were determined in 100-230 small parenchymal samples (0.3-0.4 ml) from 12 isolated perfused dog lungs held at constant inflation pressure. In each region four blood flows were measured using radioactively labeled microspheres, and the four corresponding regional perfusion pressures were determined by correcting the measured perfusion pressure for hydrostatic effects. There were considerable differences in the slopes of the pressure vs. flow curves among lung regions. Dorso-caudal regions of the lung had higher vascular conductances than ventrocephalad regions, independent of the vertical orientation of the lung or the inflation volume during injections of microspheres. Thus the distributions of regional vascular conductances were related to the anatomic location and were not related to gravity, nor were they caused by nonuniformities in regional lung expansion or by hypoxic vasoconstriction or edema.  相似文献   

13.
To determine the influence of hypovolemia on the control of forearm vascular resistance (FVR) during dynamic exercise, we studied five physically active men during 60 min of supine cycle ergometer exercise bouts at 35 degrees C in control (normovolemic) and hypovolemic conditions. Hypovolemia was achieved by 3 days of diuretic administration and resulted in an average decrease in plasma volume of 15.9%. Relative to normovolemia, hypovolemia caused an attenuation of the progressive rise in forearm blood flow (P less than 0.05) and an increase in heart rate (P less than 0.05) during exercise. Because mean arterial blood pressure during hypovolemic exercise was well maintained, the attenuation of forearm blood flow was due entirely to a relative increase in FVR. At the onset of dynamic exercise, FVR was increased significantly in control and hypovolemic conditions by 13.2 and 27.1 units, respectively. The increase in FVR was significantly different between control and hypovolemic conditions as well. We attributed the increased vasoconstrictor bias during hypovolemia to cardiopulmonary baroreceptor unloading and/or an increased sensitivity to cardiopulmonary baroreceptor unloading. We concluded that reduced blood flow to the periphery during exercise in the hypovolemic condition was caused entirely by an increase in vascular resistance, thereby preserving arterial blood pressure and adequate perfusion to the organs requiring increased flow.  相似文献   

14.
Using optimized computer models of arterial trees we demonstrate that flow heterogeneity is a necessary consequence of a uniform shear stress distribution. Model trees are generated and optimized under different modes of boundary conditions. In one mode flow is delivered to the tissue as homogeneously as possible. Although this primary goal can be achieved, resulting shear stresses between blood and the vessel walls show very large spread. In a second mode, models are optimized under the condition of uniform shear stress in all segments which in turn renders flow distribution heterogeneous. Both homogeneous perfusion and uniform shear stress are desirable goals in real arterial trees but each of these goals can only be approached at the expense of the other. While the present paper refers only to optimized models, we assume that this dual relation between the heterogeneities in flow and shear stress may represent a more general principle of vascular systems.  相似文献   

15.
Chronic use of human recombinant erythropoietin (r-HuEPO) is accompanied by serious vascular side effects related to the rise in blood viscosity and shear stress. We investigated the direct effects of r-HuEPO on endothelium and nitric oxide (NO)-dependent vasodilatation induced by shear stress of cannulated and pressurized rat mesenteric resistance arteries. Intravascular flow was increased in the presence or absence of the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (L-NAME; 10(-4) mol/L). In the presence of r-HuEPO, the flow-dependent vasodilatation was attenuated, while L-NAME completely inhibited it. The association of r-HuEPO and L-NAME caused a vasoconstriction in response to the rise in intravascular flow. Bosentan (10(-5) mol/L), an inhibitor of endothelin-1 (ET-1) receptors, corrected the attenuated vasodilatation observed with r-HuEPO and inhibited the vasoconstriction induced by flow in the presence of r-HuEPO and L-NAME. r-HuEPO and L-NAME exacerbated ET-1 vasoconstriction. At shear stress values of 2 and 14 dyn/cm(2) (1 dyn = 10(-5) N), cultured EA.hy926 endothelial cells incubated with r-HuEPO, L-NAME, or both released greater ET-1 than untreated cells. In conclusion, r-HuEPO diminishes flow-induced vasodilatation. This inhibitory effect seems to implicate ET-1 release. NO withdrawal exacerbates the vascular effects of ET-1 in the presence of r-HuEPO. These findings support the importance of a balanced endothelial ET-1:NO ratio to avoid the vasopressor effects of r-HuEPO.  相似文献   

16.
The "push-pull" effect denotes the reduced tolerance to +G(z) (hypergravity) when +G(z) stress is preceded by exposure to hypogravity, i.e., fractional, zero, or negative G(z). The purpose of this study was to test the hypothesis that an exaggerated, myogenically mediated rise in leg vascular conductance contributes to the push-pull effect, using heart level arterial blood pressure as a measure of G tolerance. The approach was to impose control (30 s of 30 degrees head-up tilt) and push-pull (30 s of 30 degrees head-up tilt immediately preceded by 10 s of -15 degrees head-down tilt) gravitational stress after administration of hexamethonium (5 mg/kg) to inhibit autonomic ganglionic neurotransmission in seven dogs. Cardiac output or thigh level arterial pressure (myogenic stimulus) was maintained constant by computer-controlled ventricular pacing. The animals were sedated with acepromazine and lightly restrained in lateral recumbency on a tilt table. Following the onset of head-up tilt, the magnitude of the fall in heart level arterial pressure from baseline was -11.6 +/- 2.9 and -17.1 +/- 2.2 mmHg for the control and push-pull trials, respectively (P < 0.05), when cardiac output was maintained constant. Over 40% of the exaggerated fall in heart level arterial pressure was attributable to an exaggerated rise in hindlimb vascular conductance (P < 0.05). Maintaining thigh level arterial pressure constant abolished the exaggerated rise in hindlimb blood flow. Thus a push-pull effect largely attributable to a myogenically induced rise in leg vascular conductance occurs when autonomic function is inhibited.  相似文献   

17.
Periodic acceleration (pGz) is produced by a platform which moves the supine body repetitively in a headward to footward direction. The imparted motion produces pulsatile shear stress on the vascular endothelium. Pulsatile shear stress on the vascular endothelium has been shown to elicit production of a host of cardioprotective, cytoprotective mediators. The purpose of this study was to ascertain if pGz also enhances production of adrenomedullin (AM) in normal healthy swine. Twelve pigs (weight range 20-30 kg) were anesthetized, intubated and placed on conventional mechanical ventilation. All animals were secured to the motion platform. In one group (pGz) (n=7) was activated for 1h, and monitored for an additional 3h. A control group (CONT) (n=5) served as time control. Arterial blood gases, hemodynamic measurements, and serum for AM, interleukin 4, 6 and thromboxane B(2) (TBXB2) were measured at baseline, immediately after pGz, and 3h after pGz had been discontinued. There was no significant change from baseline value in IL-4, IL-6 or TBXB2. Mean arterial blood pressure decreased in pGz-treated animals from 115+/-10 at baseline to 90+/-8 after 60 min of pGz (p<0.01). AM levels increase from 776+/-176 pg/ml baseline to 1160+/-68 pg/ml immediately after pGz, and remained elevated to 1584+/-160 pg/ml, 3h after pGz (p<0.01 vs. BL). This is the first report of AM-enhanced production using a non-invasive method of increasing pulsatile shear stress on the vascular endothelium. pGz increases production of AM in normal healthy swine. These changes are independent of IL-4, IL-6 or TBXB2 production.  相似文献   

18.
Activation of the complement cascade with the generation of anaphylatoxins accompanies the inflammatory response elicited by acute myocardial ischemia and reperfusion. Although complement is activated in the interstitium during acute myocardial ischemia, we have studied mechanisms whereby complement might exacerbate ischemia by using a model employing intracoronary injection of C5a in nonischemic hearts. Intracoronary injection of complement component C5a induces transient myocardial ischemia, mediated through the production of the coronary vasoconstrictors thromboxane A2 and peptidoleukotrienes (LTC4, LTD4), and causes sequestration of polymorphonuclear leukocytes (PMN) in the coronary vascular bed. To further investigate the role of the PMN in the C5a-induced vasoconstriction, the left anterior descending coronary artery (LAD) in pigs was perfused at constant pressure and measurements of coronary blood flow, myocardial contractile function (sonomicrometry), arterial/coronary venous blood PMN count, and thromboxane B2 (TxB2) levels were performed. The myocardial response to intracoronary C5a (500 ng) was determined before, during, and after perfusion with blood depleted of PMNs using leukocyte filters (Sepacell R-500, Pall PL-100). In additional animals, the myocardial response to the PMN chemotactic agent, LTB4, and the effects of intracoronary C5a during constant flow perfusion were measured. Control intracoronary injection of C5a decreased flow (41% of baseline) and contractile function (39% of baseline), PMNs were trapped (5.1 x 10(3) cells/microliters), and TxB2 concentration increased in coronary venous blood. The response to C5a during coronary perfusion with arterial blood depleted of PMNs with Sepacell or Pall filters (less than 0.1 x 10(3) cells/microliters) was greatly blunted, with flow and contractile function falling by less than 14 and 8%, respectively, from baseline, and release of TxB2 was greatly attenuated. However, the myocardial ischemia and TxB2 release remained depressed in response to C5a after removal of the filters and perfusion with either arterial blood containing normal levels of PMNs or stored arterial blood never exposed to filters. In contrast, the repeat C5a challenge resulted in equivalent myocardial extraction of PMNs, thus indicating a dissociation of PMN sequestration from the acute ischemic response and release of TxB2. In separate experiments, the intracoronary injection of LTB4 also resulted in a pronounced myocardial extraction of PMNs (8.6 x 10(3) cells/microliters) greater than during C5a, but did not depress coronary flow or function. Perfusion at constant flow greatly diminished the ischemic response to C5a, indicating that vasoconstriction and resultant ischemia is the main cause of the contractile dysfunction. These data indicate that leukocyte filters inhibit the myocardial ischemia and release of TxB2 induced by C5a via mechanisms not related to PMN depletion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In the circulation, flow-responsive endothelial cells (ECs) lining the lumen of blood vessels are continuously exposed to complex hemodynamic forces. To increase our understanding of EC response to these dynamic shearing forces, a novel in vitro flow model was developed to simulate pulsatile shear stress waveforms encountered by the endothelium in the arterial circulation. A modified waveform modeled after flow patterns in the human abdominal aorta was used to evaluate the biological responsiveness of human umbilical vein ECs to this new type of stimulus. Arterial pulsatile flow for 24 hours was compared to an equivalent time-average steady laminar shear stress, using no flow (static) culture conditions as a baseline. While both flow stimuli induced comparable changes in cell shape and alignment, distinct patterns of responses were observed in the distribution of actin stress fibers and vinculin-associated adhesion complexes, intrinsic migratory characteristics, and the expression of eNOS mRNA and protein. These results thus reveal a unique responsiveness of ECs to an arterial waveform and begin to elucidate the complex sensing capabilities of the endothelium to the dynamic characteristics of flows throughout the human vascular tree.  相似文献   

20.
The intracisternal administration of veratrine to the chloralose-anesthetized dog produces pulmonary hypertension (PH) and neurogenic pulmonary edema (NPE). To determine whether pulmonary vasoconstriction, mediated by a circulating agent, contributes to the PH, the left lower lung lobe (LLL) perfusion of seven splenectomized (to keep hematocrit and blood viscosity constant) dogs was isolated so the LLL could be perfused at constant flow and outflow pressure with blood pumped from the pulmonary artery. The LLL was denervated by removing it from the dog. Veratrine (40-160 micrograms/kg) increased LLL arterial pressure by 39.2% and produced large increases in plasma catecholamine concentrations. The double-occlusion technique indicated that 74% of the increase in the LLL arteriovenous pressure gradient was due to an increase in venous tone. This pattern of vasoconstriction was similar to that previously observed during the infusion of exogenous catecholamines and suggested that catecholamines mediated the LLL response. The more severe degree of PH observed in the intact animal in NPE, however, suggests that passive rather than active changes in pulmonary hemodynamics are predominantly responsible for the development of PH in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号