首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A thermoresponsive cationic copolymer, poly( N-isopropylacrylamide- co- N-(3-(dimethylamino)propyl)methacrylamide)- b-polyethyleneimine (P(NIPAAm- co-NDAPM)- b-PEI), was designed and synthesized as a potential nonviral gene vector. The lower critical solution temperature (LCST) of P(NIPAAm- co-NDAPM)- b-PEI in water measured by UV-vis spectroscopy was 38 degrees C. P(NIPAAm- co-NDAPM)- b-PEI as the gene vector was evaluated in terms of cytotoxicity, buffer capability determined by acid-base titration, DNA binding capability characterized by agarose gel electrophoresis and particle size analysis, and in vitro gene transfection. P(NIPAAm- co-NDAPM)- b-PEI copolymer exhibited lower cytotoxicity in comparison with 25 kDa PEI. Gel retardation assay study indicated that the copolymer was able to bind DNA completely at N/P ratios higher than 30. At 27 degrees C, the mean particle sizes of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes decreased from 1200 to 570 nm corresponding to the increase in N/P ratios from 10 to 60. When the temperature changed to 37 degrees C, the mean particle sizes of complexes decreased from 850 to 450 nm correspondingly within the same N/P ratio range due to the collapse of thermoresponsive PNIPAAm segments. It was found that the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes was higher than or comparable to that of 25 kDa PEI/DNA complexes at their optimal N/P ratios. Importantly, the transfection efficiency of P(NIPAAm- co-NDAPM)- b-PEI/DNA complexes could be adjusted by altering the transfection and cell culture temperature.  相似文献   

2.
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and SuperFect, were also largely negatively charged when complexed with DNA. The aggregation of liposomes in medium was prevented by the addition of DNA. Incubation of the complexes in medium did not change their size, charge or lipofection activity for 30 min. These results suggest that, in medium, the liposome/DNA complexes were formed at the time of mixing with negative charges.  相似文献   

3.
Evaluation of lipid-based reagents to mediate intracellular gene delivery   总被引:3,自引:0,他引:3  
We characterized different cationic lipid-based gene delivery systems consisting of both liposomes and nonliposomal structures, in terms of their in vitro transfection activity, resistance to the presence of serum, protective effect against nuclease degradation and stability under different storage conditions. The effect of lipid/DNA charge ratio of the resulting complexes on these properties was also evaluated. Our results indicate that the highest levels of transfection activity were observed for complexes prepared from nonliposomal structures composed of FuGENE 6. However, their DNA protective effect was shown to be lower than that observed for cationic liposome formulations when prepared at the optimal (+/-) charge ratio. Our results suggest that lipoplexes are resistant to serum up to 30% when prepared at a 2:1 lipid/DNA charge ratio. However, when they were prepared at higher (+/-) charge ratios, they become sensitive to serum for even lower concentrations (10%). Replacement of dioleoyl-phosphatidylethanolamine (DOPE) by cholesterol enhanced the resistance of the complexes to the inhibitory effect of serum. This different biological activity in the presence of serum was attributed to different extents of binding of serum proteins to the complexes, as evaluated by the immunoblotting assay. Studies on the stability under storage show that lipoplexes maintain most of their biological activity when stored at -80 degrees C, following their fast freezing in liquid nitrogen.  相似文献   

4.
Efficient gene transfer by transferrin lipoplexes in the presence of serum   总被引:1,自引:0,他引:1  
Cationic lipids are being used increasingly as reagents for gene delivery both in vitro and in vivo. One of the limitations to the application of cationic lipid-DNA complexes (lipoplexes) in vivo is the inhibition of gene delivery by serum. In this study, we have shown that transferrin (Tf)-lipoplexes, which had transferrin adsorbed at their surface via electrostatic interactions, are much more effective than plain lipoplexes in transfecting cells in the presence of relatively high concentrations (up to 60%) of fetal bovine serum (FBS). Serum even enhanced transfection by Tf-lipoplexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP)/dioleoylphosphatidylethanolamine (DOPE)/pCMVLacZ at high lipid/DNA (+/-) charge ratios, and inhibited lipofection for those with low charge ratios when they were added to the cells immediately after the preparation of complexes. The effect of serum on lipofection was dose-dependent. Preincubation of the complexes at 20 degrees C for 6 h led to serum resistance, even for the negatively charged transferrin-lipoplexes. A similar tendency was observed for DOTAP/cholesterol and DOTAP/DOPE/cholesterol liposomes. The percentage of cells transfected, measured by beta-galactosidase expression, also increased with the serum concentration. Cell viability was not affected significantly when the cells were incubated with the complexes for 4 h at 37 degrees C, followed by a 48-h incubation. Our findings extend the scope of previous studies where transferrin-lipoplexes were used to introduce DNA into cells, rendering these complexes and their future derivatives potential alternatives to viral vectors for gene delivery in vivo.  相似文献   

5.
Zhao X  Pan F  Zhang Z  Grant C  Ma Y  Armes SP  Tang Y  Lewis AL  Waigh T  Lu JR 《Biomacromolecules》2007,8(11):3493-3502
Although various cationic polymers have been used to condense anionically charged DNA to improve their transfection efficiency, there is still a lack of fundamental understanding about how to control the nanostructure and charge of the polyplexes formed and how to relate such information to cell transfection efficiency. In this work, we have synthesized a weak cationic and phosphorylcholine-containing diblock copolymer and used it as a model vector to deliver an antisense oligodeoxynucleotide (ODN) into HeLa cells. Small angle neutron scattering (SANS) was used to determine the copolymer/ODN polyplex structure. The SANS data revealed the formation of polyplex nanocylinders at high copolymer (N)/ODN (P) charge ratios, where N symbolizes the amine groups on the copolymer and P symbolizes the phosphate groups. However, the cylindrical lengths remained constant, indicating that the ODN binding over this region did not alter the cylindrical shape of the copolymer in solution. As the N/P ratio decreased and became close to unity the polyplex diameters remained constant, but their lengths increased substantially, suggesting the end-to-end bridging by ODN binding between copolymer cylinders. As the N/P ratios went below unity (with ODN in excess), the polyplex diameters increased substantially, indicating different ODN bridging to bundle the small polyplexes together. Transfection studies from HeLa cells indicated a steady increase in transfection efficiency with increasing cationic charge and decreasing polyplex size. Cell growth inhibition assay showed significant growth inhibition by the polyplexes coupled with weak cytotoxicity, indicating effective ODN delivery. While this study has confirmed the overall charge effect, it has also revealed progressive structural changes of the polyplexes against varying charge ratio, thereby providing useful insight into the mechanistic process behind the ODN delivery.  相似文献   

6.
To understand the influence of charge groups on transfection mediated by polymer complexes, we have synthesized a series of biodegradable and cationic polyphosphoramidates (PPAs) with an identical backbone but different side chains. Our previous study showed that PPA with a spermidine side chain (PPA-SP) showed high transfection efficiency in culture, whereas PPAs with secondary, tertiary, and quaternary amino groups were significantly less efficient. To investigate whether the coexistence of 1 degrees amino charge groups with 3 degrees and 2 degrees amino charge groups in the DNA/polymer complexes would enhance their transfection efficiency, we evaluated a ternary complex system containing DNA and PPAs with 1 degrees amino groups (PPA-SP) and 3 degrees amino groups (PPA-DMA) and a quaternary complex system containing DNA and PPAs with 1 degrees and 2 degrees and 3 degrees amino groups (PPA-EA/PPA-MEA/PPA-DMA), respectively. Ternary complexes mediated 20 and 160 times higher transfection efficiency in COS-7 cells than complexes of DNA with PPA-SP or PPA-DMA alone, respectively. Similarly, quaternary complexes exhibited 8-fold higher transfection efficiency than PPA-EA/DNA complexes. The mechanism of enhancement in transfection efficiency by the mixture carriers appears to be unrelated to the particle size, zeta potential, or DNA uptake. The titration characterization and the transfection experiments using a proton pump inhibitor suggest that the enhancement effect is unlikely due to the slightly improved buffering capacity of the mixture over PPA-SP. This approach represents a simple strategy of developing polymeric gene carriers and understanding the mechanisms of polymer-mediated gene transfer.  相似文献   

7.
End-functionalized poly(N-isopropylacrylamide) (PNIPA) was synthesized by living free radical polymerization and conventional free radical polymerization and was used to prepare graft copolymers with poly(ethylenimine) (PEI). The copolymers exhibited lower critical solution temperature (LCST) behavior between 30 and 32 degrees C and formed complexes with plasmid DNA. The LCST of the copolymers in the DNA complexes increased slightly to approximately 34-35 degrees C. Cytotoxicity of the copolymers was evaluated by measuring lactate dehydrogenase (LDH) release from cells. The copolymers exhibited temperature-dependent toxicity, with higher levels of LDH release observed at temperatures above the LCST. Cellular uptake and transfection activity of the DNA complexes with the PEI-g-PNIPA copolymers were lower than those of the control PEI/DNA complexes at temperature below the LCST but increased to the PEI/DNA levels at temperatures above the LCST.  相似文献   

8.
The objective of this work was to obtain gene delivery vectors with high efficiency induced by application of local hyperthermia. As a building construct for the polyplex particles, block copolymers were used, in which one block represents poly(ethyleneimine) (PEI) and another block a statistical copolymer of poly(N-isopropylacryamide) (PNIPAM) and different hydrophilic monomers (acrylamide or vinylpyrrolidinone). The block copolymers were synthesizized by radical polymerization of the corresponding monomers directly onto PEI. The complexation of DNA with these copolymers led to small, charge neutral particles, which aggregated upon increasing the temperature from 37 degrees C to 42 degrees C. This aggregation was found to be responsible for the enhanced transfection efficiency of these formulations under hyperthermic conditions. Gene expression in cells treated by hyperthermia was found to be nearly 2 orders of magnitude higher in comparison to cells transfected at physiological temperature. The mechanism by which hyperthermia influences the gene transfection efficiency is proposed.  相似文献   

9.
The successful application of gene therapy depends highly on understanding the properties of gene carriers and their correlation with the ability to mediate transfection. An important parameter that has been described to improve transfection mediated by cationic liposomes involves association of ligands to cationic liposome–DNA complexes (lipoplexes). In this study, ternary complexes composed of 1,2-dioleoyl-3-(trimethylammonium) propane:cholesterol, plasmid DNA and transferrin (Tf, selected as a paradigm of a ligand) were prepared under various conditions, namely, in medium with different ionic strengths (HEPES-buffered saline [HBS] or dextrose), at different lipid/DNA (+/–) charge ratios and using different modes for component addition. We investigated the effect of these formulation parameters on transfection (in the absence and presence of serum), size of the complexes, degree of DNA protection and extent of their association with cells (in terms of both lipid and DNA). Our results show that all the tested parameters influenced to some extent the size of the complexes and their capacity to protect the carried genetic material, as well as the levels of cell association and transfection. The best transfection profile was observed for ternary complexes (Tf-complexes) prepared in high ionic strength solution (HBS), at charge ratios close to neutrality and according to the following order of component addition: cationic liposomes–Tf–DNA. Interestingly, in contrast to what was found for dextrose–Tf-complexes, transfection mediated by HBS-Tf-complexes in the presence of serum was highly enhanced.  相似文献   

10.
Block copolymers containing stimuli-responsive segments provide important new opportunities for controlling the activity and aggregation properties of protein-polymer conjugates. We have prepared a RAFT block copolymer of a biotin-terminated poly(N-isopropylacrylamide) (PNIPAAm)-b-poly(acrylic acid) (PAA). The number-average molecular weight (M(n)) of the (PNIPAAm)-b-(PAA) copolymer was determined to be 17.4 kDa (M(w)/M(n) = 1.09). The PNIPAAm block had an M(n) of 9.5 kDa and the poly(acrylic acid) (PAA) block had an M(n) of 7.9 kDa. We conjugated this block copolymer to streptavidin (SA) via the terminal biotin on the PNIPAAm block. We found that the usual aggregation and phase separation of PNIPAAm-SA conjugates that follow the thermally induced collapse and dehydration of PNIPAAm (the lower critical solution temperature (LCST) of PNIPAAm is 32 degrees C in water) is prevented through the shielding action of the PAA block. In addition, we show that the cloud point and aggregation properties (as measured by loss in light transmission) of the [(PNIPAAm)-b-(PAA)]-SA conjugate also depended on pH. At pH 7.0 and at temperatures above the LCST, the block copolymer alone was found to form particles of ca. 60 nm in diameter, while the bioconjugate exhibited very little aggregation. At pH 5.5 and 20 degrees C, the copolymer alone was found to form large aggregates (ca. 218 nm), presumably driven by hydrogen bonding between the -COOH groups of PAA with other -COOH groups and also with the -CONH- groups of PNIPAAm. In comparison, the conjugate formed much smaller particles (ca. 27 nm) at these conditions. At pH 4.0, however, large particles were formed from the conjugate both above and below the LCST (ca. 700 and 540 nm, respectively). These results demonstrate that the aggregation properties of the block copolymer-SA conjugate are very different from those of the free block copolymer, and that the outer-oriented hydrophilic block of PAA shields the intermolecular aggregation of the block copolymer-SA bioconjugate at pH values where the -COOH groups of PAA are significantly ionized.  相似文献   

11.
For two series of polyethylenimine-graft-poly(ethylene glycol) (PEI-g-PEG) block copolymers, the influence of copolymer structure on DNA complexation was investigated and physicochemical properties of these complexes were compared with the results of blood compatibility, cytotoxicity, and transfection activity assays. In the first series, PEI (25 kDa) was grafted to different degrees of substitution with PEG (5 kDa) and in the second series the molecular weight (MW) of PEG was varied (550 Da to 20 kDa). Using atomic force microscopy, we found that the copolymer block structure strongly influenced the DNA complex size and morphology: PEG 5 kDa significantly reduced the diameter of the spherical complexes from 142 +/- 59 to 61 +/- 28 nm. With increasing degree of PEG grafting, complexation of DNA was impeded and complexes lost their spherical shape. Copolymers with PEG 20 kDa yielded small, compact complexes with DNA (51 +/- 23 nm) whereas copolymers with PEG 550 Da resulted in large and diffuse structures (130 +/- 60 nm). The zeta-potential of complexes was reduced with increasing degree of PEG grafting if MW >or= 5 kDa. PEG 550 Da did not shield positive charges of PEI sufficiently leading to hemolysis and erythrocyte aggregation. Cytotoxicity (lactate dehydrogenase assay) was independent of MW of PEG but affected by the degree of PEG substitution: all copolymers with more than six PEG blocks formed DNA complexes of low toxicity. Finally, transfection efficiency of the complexes was studied. The combination of large particles, low toxicity, and high positive surface charge as in the case of copolymers with many PEG 550 Da blocks proved to be most efficient for in vitro gene transfer. To conclude, the degree of PEGylation and the MW of PEG were found to strongly influence DNA condensation of PEI and therefore also affect the biological activity of the PEI-g-PEG/DNA complexes. These results provide a basis for the rational design of block copolymer gene delivery systems.  相似文献   

12.
Tumor-targeting DNA complexes which can readily be generated by the mixing of stable components and freeze-thawed would be very advantageous for their subsequent application as medical products. Complexes were generated by the mixing of plasmid DNA, linear polyethylenimine (PEI22, 22 kDa) as the main DNA condensing agent, PEG-PEI (poly(ethylene glycol)-conjugated PEI) for surface shielding, and Tf-PEG-PEI (transferrin-PEG-PEI) to provide a ligand for receptor-mediated cell uptake. Within the shielding conjugates, PEG chains of varying size (5, 20, or 40 kDa) were conjugated with either linear PEI22 (22 kDa) or branched PEI25 (25 kDa). The three polymer components were mixed together at various ratios with DNA; particle size, surface charge, in vitro transfection activity, and systemic gene delivery to tumors was investigated. In general, increasing the proportion of shielding conjugate in the complex reduced surface charge, particle size, and in vitro transfection efficiency in transferrin receptor-rich K562 cells. The particle size or surface charge of the complexes containing the PEG-PEI conjugate did not significantly change after freeze-thawing, while complexes without the shielding conjugate aggregated. Complexes containing PEG-PEI conjugate efficiently transfected K562 cells after freeze-thawing. Furthermore the systemic application of freeze-thawed complexes exhibited in vivo tumor targeted expression. For complexes containing the luciferase reporter gene the highest expression was found in tumor tissue of mice. An optimum formulation for in vivo application, PEI22/Tf-PEG-PEI/PEI22-PEG5, containing plasmid DNA encoding for the tumor necrosis factor (TNF-alpha), inhibited tumor growth in three different murine tumor models. These new DNA complexes offer simplicity and convenience, with tumor targeting activity in vivo after freeze-thawing.  相似文献   

13.
A thermo-sensitive comb-like copolymer was synthesized by grafting PNIPAAm-COOH with a single carboxy end group onto aminated alginate (AAlg) through amide bond linkages. In the copolymer, alginate was the backbone and poly(N-isopropylacrylamide) (PNIPAAm) was the pendant group. The structures of AAlg and three AAlg-g-PNIPAAm copolymers with different PNIPAAm grafting ratios were determined by FTIR and 1H NMR. The rheological properties of AAlg-g-PNIPAAm copolymer hydrogels were measured by monitoring the viscosity, storage modulus and loss modulus as a function of temperature. The lower critical solution temperature of AAlg-g-PNIPAAm copolymers was measured as 35 °C through rheological analysis. An in vitro degradation study was carried out by monitoring weight loss. It was confirmed that degradation can be controlled by PNIPAAm modification. Encapsulation of human bone mesenchymal stem cells (hBMSCs) within hydrogels showed that the AAlg-g-PNIPAAm copolymer was not cytotoxic and preserved the viability of the entrapped cells well. The thermo-sensitive AAlg-g-PNIPAAm copolymer has attractive properties that make it suitable as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.  相似文献   

14.
To improve transfection efficiency, we prepared N-maleyl chitosan-graft-polyamidoamine (NMCTS-graft-PAMAM) copolymer. Self-assembled NMCTS-graft-PAMAM/pDNA complexes were prepared by complex coacervation method at different N/P (nitrogen to phosphate ratio) ratios. The copolymer effectively formed complexes with pDNA at lower N/P ratio (N/P ratio 1.0) than that of unmodified chitosan (N/P ratio 2.0) and the complexes were spherical with particle size of 100–150 nm. The copolymer showed significant protection of DNA from nuclease attack with lower toxicity against HeLa cell. The copolymer also showed no noticeable hemolytic effects up to 10 mg/mL indicating no detectable disturbance of the red blood cell membranes. The transfection efficiency of the copolymer was increased significantly compared to that of chitosan and reached up to 36 ± 2% at N/P ratio 7.0 which was higher than that of PEI (30 ± 3% at N/P ratio 10). Therefore, the copolymer may be a strong alternative candidate as effective nonviral vector.  相似文献   

15.
16.
We have synthesized a novel gene delivery vector by covalently combining branched polyethylenimine (bPEI) and hyaluronic acid (HA) with the aim of improving transfection of bPEI into human mesenchymal stem cells (hMSCs) while maintaining cell viability. Because of the opposite charges on bPEI and HA, the bPEI-HA vector forms a zwitterionic polymer capable of inter- and intramolecular interactions. We have characterized the hydrodynamic radius of bPEI-HA and bPEI-HA/DNA complexes at ambient and physiological temperatures, as well as at a range of salt concentrations using light scattering, and investigated the effect of the size of transfecting complexes on gene delivery. We found that by increasing the salt concentration from 150 to 1000 mM of NaCl, the mean hydrodynamic radius (R(h)) of bPEI-HA increases from 2.0 +/- 1.1 to 366.0 +/- 149.0 nm. However, increasing the salt concentration decreases the mean R(h) of bPEI-HA/DNA complexes from 595.0 +/- 44.6 to 106.0 +/- 19.2 nm at 25 degrees C and from 767.0 +/- 137.2 to 74.0 +/- 23.0 nm at 37 degrees C. hMSCs transfected with smaller complexes showed a significant increase in transfection from 3.8 +/- 1.5% to 19.1 +/- 4.4%. Similarly, bPEI-HA performed significantly better than bPEI in terms of cell viability (86.0 +/- 6.7% with bPEI-HA versus 7.0 +/- 2.8% with bPEI, 24 h post exposure at the highest concentration of 500 mg/mL) and maximum transfection efficiencies (12.0 +/- 4.2% with bPEI/DNA complexes and 33.6 +/- 13.9% with bPEI-HA/DNA complexes). Thus, modifying bPEI by covalent conjugation with HA improves its performance as a gene delivery vector in hMSCs. This presents a promising approach to altering hMSCs for tissue engineering and other applications.  相似文献   

17.
A novel series of N,N'-diacyl-1,2-diaminopropyl-3-carbamoyl-(dimethylaminoethane) cationic derivatives was synthesized and screened for in vitro transfection activity at different charge ratios in the presence and absence of the helper lipids DOPE and cholesterol. Physicochemical properties of lipid-DNA complexes were studied by gel electrophoresis, fluorescence spectroscopy and dynamic light scattering. The interfacial properties of the lipids in isolation were studied using the Langmuir film balance technique at 23 degrees C. It was found that only lipoplexes formulated with the dioleoyl derivative, 1,2lmt[5], mediated significant in vitro transfection activity. Optimum activity was obtained with 1,2lmt[5]/DOPE mixture at a +/-charge ratio of 2. In agreement with the transfection results, 1,2lmt[5] was the only lipid found to complex and retard DNA migration as verified by gel electrophoresis. Despite the efficient complexation, no significant condensation of plasmid DNA was observed as indicated by fluorescence spectroscopy measurements. Monolayer studies showed that the dioleoyl derivative 1,2lmt[5] was the only lipid that existed in an all liquid-expanded state with a collapse area and collapse pressure of 59.5 A2 and 38.7 mN/m, respectively. This lipid was also found to have the highest elasticity with a compressibility modulus at monolayer collapse of 80.4 mN/m. In conclusion, increased acyl chain fluidity and high molecular elasticity of cationic lipids were found to correlate with improved transfection activity.  相似文献   

18.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

19.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

20.
A facile, one-step synthesis of cationic block copolymers of poly(2-N-(dimethylaminoethyl) methacrylate) (pDMAEMA) and copolymers of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEO) has been developed. The PEO-PPO-PEO-pDMAEMA (L92-pDMAEMA) and PEO-pDMAEMA copolymers were obtained via free radical polymerization of DMAEMA initiated by polyether radicals generated by cerium(IV). Over 95% of the copolymer fraction was of molecular mass ranging from 6.9 to 7.1 kDa in size, indicating the prevalence of the polyether-monoradical initiation mechanism. The L92-pDMAEMA copolymers possess parent surfactant-like surface activity. In contrast, the PEO-pDMAEMA copolymers lack significant surface activity. Both copolymers can complex with DNA. Hydrodynamic radii of the complexes of the L92-pDMAEMA and PEO-pDMAEMA with plasmid DNA ranged in size from 60 to 400 nm, depending on the copolymer/DNA ratio. Addition of Pluronic P123 to the L92-pDMAEMA complexes with DNA masked charges and decreased the tendency of the complex to aggregate, even at stoichiometric polycation/DNA ratios. The transfection efficiency of the L92-pDMAEMA copolymer was by far greater than that of the PEO-pDMAEMA copolymer. An extra added Pluronic P123 further increased the transfecton efficacy of L92-pDMAEMA, but did not affect that of PEO-pDMAEMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号