首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.  相似文献   

2.
Nucleotide sequence modification through single base editing in animals is emerging as an important player in tumorigenesis. RNA editing especially has increased greatly during mammalian evolution and modulates diverse cellular functions presumably in a context-dependent manner. Sequence editing impacts development, including pluripotency and hematopoiesis, and multiple recent studies have shown that dysregulation of editing is associated with tumor biology. Much is yet to be learned about the role of sequence editing in human biology but this process is a critical modulator of cell regulation and may present an attractive option for therapeutic intervention in cancer in the future.SignificanceSequence editing provides an additional regulatory layer of cancer initiation and progression that may be amenable to therapeutic design. Although editing of both RNA and DNA substrates has been known to occur for some time, the extent and implications of these modifications have been grossly underappreciated until recent genome-wide and disease-association studies were reported. This review highlights the cellular processes controlled by sequence editing, their implications in normal and cancerous states and considers potential targeted therapeutic strategies.  相似文献   

3.
The constitutive photomorphogenesis 9 signalosome (COP9 or CSN) is an evolutionarily conserved multiprotein complex found in plants and animals. Because of the homology between the COP9 signalosome and the 19S lid complex of the proteosome, COP9 has been postulated to play a role in regulating the degradation of polyubiquitinated proteins. Many tumor suppressor and oncogene products are regulated by ubiquitination- and proteosome-mediated protein degradation. Therefore, it is conceivable that COP9 plays a significant role in cancer, regulating processes relevant to carcinogenesis and cancer progression (e.g., cell cycle control, signal transduction and apoptosis). In mammalian cells, it consists of eight subunits (CSN1 to CSN8). The relevance and importance of some subunits of COP9 to cancer are emerging. However, the mechanistic regulation of each subunit in cancer remains unclear. Among the CSN subunits, CSN5 and CSN6 are the only two that each contain an MPN (Mpr1p and Pad1p N-terminal) domain. The deneddylation activity of an MPN domain toward cullin-RING ubiquitin ligases (CRL) may coordinate CRL-mediated ubiquitination activity. More recent evidence shows that CSN5 and CSN6 are implicated in ubiquitin-mediated proteolysis of important mediators in carcinogenesis and cancer progression. Here, we discuss the mechanisms by which some CSN subunits are involved in cancer to provide a much needed perspective regarding COP9 in cancer research, hoping that these insights will lay the groundwork for cancer intervention.Key words: ubiquitination, CSN, COP9 signalosome, Mdm2, p53, cancer, MPN domain, neddylation, Nedd8, cullin  相似文献   

4.
5.
6.
真核翻译起始因子3(Eukaryotic translation factor 3,eIF3)是由多个亚单位组成的复合因子,其中eIF3a是其最大的亚单位。很多研究表明在酵母和哺乳动物细胞中,eIF3都参与了m RNA翻译起始,并对蛋白质的合成有很好的调控作用。值得一提的是eIF3a通过调控一系列与肿瘤的生成、细胞周期的调控DNA修复等过程相关的m RNA的翻译从而在肿瘤的发生、演进和干预中发挥重要作用。此外,研究发现eIF3a对RAF-MEK-ERK信号通路有抑制作用。eIF3a对蛋白质翻译的调节及其对RAF-MEK-ERK信号通路的影响使其有望成为肿瘤治疗的新靶点。本文将着重围绕eIF3a在肿瘤发生、演进和干预中的作用进行概述。  相似文献   

7.
The COP9 signalosome (CSN) complex controls protein degradation via the ubiquitin (Ub) proteasome system (UPS) in eukaryotes. In mammalian cells, the multimeric CSN is composed of eight subunits (CSN1 - CSN8). It regulates cullin-RING Ub ligases (CRLs), which target essential regulatory proteins for ubiquitination and subsequent degradation. Thereby, the CSN cooperates with the UPS in a variety of essential cellular functions, including DNA repair, cell cycle and differentiation. Although functions of the CSN have been elucidated, mechanisms and regulatory principles of its de novo formation are completely unknown. Here, we show that there is a fundamental mechanism that allows a coordinated expression of all CSN subunits, a prerequisite for CSN assembly. CSN subunit mRNAs are targets of miRNAs of the let-7 family suppressing CSN subunit expression in human cells. Factors that reduce or block let-7 miRNAs induce the coordinated expression of CSN subunits. For instance, over-expression of CSN1 specifically traps let-7a-1 miRNA and elevates CSN subunit levels by two- to fourfold in a coordinated manner. CSN subunit expression is also increased by specific miRNA inhibitors or by interferon (IFN)-mediated induction of STAT1 and c-Myc reducing levels of let-7 miRNAs. Activation of STAT1 by IFNα or IFNγ induces c-Myc, which increases CSN subunit expression via the Lin28B/let-7 regulatory pathway. By contrast, a let-7a-1 mimic reduces CSN subunit expression. Our data show that let-7 miRNAs control the fine-tuning and coordinated expression of subunits for CSN de novo formation, presumably a general regulatory principle for other Zomes complexes as well.  相似文献   

8.
The signal transduction mediated by heterotrimeric G proteins is involved in the regulation of a plethora of cell functions ranging from the sensation of light, taste and odor to chemotaxis, inflammation and the coordination of immune responses. These reactions have in common that they occur fast and are short-lived. Apart from this, it becomes increasingly evident, that the signaling of heterotrimeric G proteins has an imminent function in gene regulation, too, and therefore mediates even long-term effects. Herein, we illustrate the pathways of the four classes of α subunits and of the βγ subunits of these heterotrimeric G proteins especially with regard to their function in cancer. G protein signaling is crucial for the development and localization of metastases and furthermore has been shown to be involved in tumor growth and angiogenesis. We summarize the current knowledge, how these processes are regulated by the short-term cellular response and the long-term gene regulation in cancer cells, and we discuss possible strategies for a therapeutic intervention.  相似文献   

9.
Wei H  Guan JL 《Autophagy》2012,8(1):129-131
Autophagy is a highly conserved catabolic cellular process by which cells degrade intracellular constituents in lysosomes, and its dysfunctions have been associated with a variety of human diseases including cancer. Previous studies have linked autophagy to both tumor-suppressive and promoting functions in different contexts, although the pro-tumorigenic function of autophagy has not been examined directly in breast or other cancers in animal models with intact immune functions in vivo. FIP200 (focal adhesion kinase family interacting protein of 200 kD) is a component of the ULK1-Atg13-FIP200-Atg101 complex that is essential for the induction of mammalian autophagy. In our recent study, we show that conditional knockout (KO) of FIP200 in the well-characterized MMTV-PyMT mouse model of human breast cancer significantly suppresses mammary tumorigenesis and progression. Similar to a number of recent studies in Ras-transformed cells, our studies revealed the importance of autophagy in promoting tumorigenesis through regulation of tumor cell glycolysis and proliferation. In addition to the intrinsic defects in proliferation of FIP200-null tumor cells, we also showed that FIP200 deletion in mammary tumor cells triggers increased host anti-tumor immune surveillance, which also contributes to the decreased mammary tumorigenesis and progression. Our study provides the first direct demonstration of a pro-tumorigenic role of autophagy in oncogene-driven tumor models with intact immune functions in vivo. They also suggest FIP200 and other autophagy proteins as potential therapeutic targets for cancer treatment, and raise a number of questions for future studies on the potentially dual functions of autophagy in promoting and suppressing tumorigenesis under different conditions in vivo.  相似文献   

10.
The COP9 signalosome (CSN) is a multiprotein complex that plays a critical role in diverse cellular and developmental processes in various eukaryotic organisms. Despite of its significance, current understanding of the biological functions and regulatory mechanisms of the CSN complex is still very limited. To unravel these molecular mechanisms, we have performed a comprehensive proteomic analysis of the human CSN complex using a new purification method and quantitative mass spectrometry. Purification of the human CSN complex from a stable 293 cell line expressing N-terminal HBTH-tagged CSN5 subunit was achieved by high-affinity streptavidin binding with TEV cleavage elution. Mass spectrometric analysis of the purified CSN complex has revealed the identity of its composition as well as N-terminal modification and phosphorylation of the CSN subunits. N-terminal modifications were determined for seven subunits, six of which have not been reported previously, and six novel phosphorylation sites were also identified. Additionally, we have applied the newly developed MAP-SILAC and PAM-SILAC methods to decipher the dynamics of the human CSN interacting proteins. A total of 52 putative human CSN interacting proteins were identified, most of which are reported for the first time. In comparison to PAM-SILAC results, 20 proteins were classified as stable interactors, whereas 20 proteins were identified as dynamic ones. This work presents the first comprehensive characterization of the human CSN complex by mass spectrometry-based proteomic approach, providing valuable information for further understanding of CSN complex structure and biological functions.  相似文献   

11.
The COP9 signalosome (CSN) is an essential eight-subunit repressor of light-regulated development in ARABIDOPSIS: This complex has also been identified in animals, though its developmental role remains obscure. CSN subunits have been implicated in various cellular processes, suggesting a possible role for the CSN as an integrator of multiple signaling pathways. In order to elucidate the function of the CSN in animals, a Drosophila model system has previously been established. Gel-filtration analysis with antibodies against CSN subunits 4, 5 and 7 revealed that these proteins act as a complex in Drosophila that is similar in size to the plant and mammalian complexes. Null mutations in either one of two subunits, CSN4 or CSN5, are larval lethal. Successful embryogenesis appears to be a consequence of maternal contribution of the complex. Biochemical analysis indicates that the different subunits are found in both CSN-dependent and CSN-independent forms, and that these forms are differentially affected by the mutations. Phenotypic characterization of these two mutants indicates that they show both shared and unique phenotypes, which suggest specific roles for each subunit. Both mutants have defective oocyte and embryo patterning, and defects in response to DNA damage, while csn5 mutants develop melanotic tumors and csn4 mutants have phenotypes reminiscent of defects in ecdysone signaling.  相似文献   

12.
FADD (Fas Associated protein with Death Domain) is a key adaptor molecule transmitting the death signal mediated by death receptors. In addition, this multiple functional protein is implicated in survival/proliferation and cell cycle progression. FADD functions are regulated via cellular sublocalization, protein phosphorylation, and inhibitory molecules. In the present review, we focus on the role of the FADD adaptor in cancer. Increasing evidence shows that defects in FADD protein expression are associated with tumor progression both in mice and humans. Better knowledge of the mechanisms leading to regulation of FADD functions will improve understanding of tumor growth and the immune escape mechanisms, and could open a new field for therapeutic interventions.  相似文献   

13.
The main role of condensins is to regulate chromosome condensation and segregation during cell cycles. Recently, it has been suggested in the literatures that subunits of condensin I and condensin II are involved in some human cancers. This paper will first briefly discuss discoveries of human condensins, their components and structures, and their multiple cellular functions. This will be followed by reviews of most recent studies on subunits of human condensins and their dysregulations or mutations in human cancers. It can be concluded that many of these subunits have potentials to be novel targets for cancer therapies. However, hCAP-D2, a subunit of human condensin I, has not been directly documented to be associated with any human cancers to date. This review hypothesizes that hCAP-D2 can also be a potential therapeutic target for human cancers, and therefore that all subunits of human condensins are potential therapeutic targets for human cancers.  相似文献   

14.
Heterogeneous nuclear ribonucleoprotein L (hnRNPL) is a type of RNA binding protein that highly expressed in a variety of tumors and plays a vital role in tumor progression. However, its post-translational regulation through ubiquitin-mediated proteolysis and the cellular mechanism responsible for its proteasomal degradation remains unclear. F-box proteins (FBPs) function as the substrate recognition subunits of SCF ubiquitin ligase complexes and directly bind to substrates. The aberrant expression or mutation of FBPs will lead to the accumulation of its substrate proteins that often involved in tumorigenesis. Here we discover FBXO16, an E3 ubiquitin ligase, to be a tumor suppressor in ovarian cancer, and patients with the relatively high expression level of FBXO16 have a better prognosis. Silencing or depleting FBXO16 significantly enhanced ovarian cancer cell proliferation, clonogenic survival, and cell invasion by activating multiple oncogenic pathways. This function requires the F-box domain of FBXO16, through which FBXO16 assembles a canonical SCF ubiquitin ligase complex that constitutively targets hnRNPL for degradation. Depletion of hnRNPL is sufficient to inactive multiple oncogenic signaling regulated by FBXO16 and prevent the malignant behavior of ovarian cancer cells caused by FBXO16 deficiency. FBXO16 interacted with the RRM3 domain of hnRNPL via its C-terminal region to trigger the proteasomal degradation of hnRNPL. Failure to degrade hnRNPL promoted ovarian cancer cell proliferation in vitro and tumor growth vivo, phenocopying the deficiency of FBXO16 in ovarian cancer.Subject terms: Ovarian cancer, Oncogenes  相似文献   

15.
16.
The Growth Arrest and DNA Damage-inducible 45 (GADD45) proteins have been implicated in regulation of many cellular functions including DNA repair, cell cycle control, senescence and genotoxic stress. However, the pro-apoptotic activities have also positioned GADD45 as an essential player in oncogenesis. Emerging functional evidence implies that GADD45 proteins serve as tumor suppressors in response to diverse stimuli, connecting multiple cell signaling modules. Defects in the GADD45 pathway can be related to the initiation and progression of malignancies. Moreover, induction of GADD45 expression is an essential step for mediating anti-cancer activity of multiple chemotherapeutic drugs and the absence of GADD45 might abrogate their effects in cancer cells. In this review, we present a comprehensive discussion of the functions of GADD45 proteins, linking their regulation to effectors of cell cycle arrest, DNA repair and apoptosis. The ramifications regarding their roles as essential and central players in tumor growth suppression are also examined. We also extensively review recent literature to clarify how different chemotherapeutic drugs induce GADD45 gene expression and how its up-regulation and interaction with different molecular partners may benefit cancer chemotherapy and facilitate novel drug discovery.  相似文献   

17.
The role of macroautophagy (hereafter autophagy) in cancer biology and response to clinical intervention is complex. It is clear that autophagy is dysregulated in a wide variety of tumor settings, both during tumor initiation and progression, and in response to therapy. However, the pleiotropic mechanistic roles of autophagy in controlling cell behavior make it difficult to predict in a given tumor setting what the role of autophagy, and, by extension, the therapeutic outcome of targeting autophagy, might be. In this review we summarize the evidence in the literature supporting pro- and anti-tumorigenic and -therapeutic roles of autophagy in cancer. This overview encompasses roles of autophagy in nutrient management, cell death, cell senescence, regulation of proteotoxic stress and cellular homeostasis, regulation of tumor-host interactions and participation in changes in metabolism. We also try to understand, where possible, the mechanistic bases of these roles for autophagy. We specifically expand on the emerging role of genetically- engineered mouse models of cancer in shedding light on these issues in vivo. We also consider how any or all of the above functions of autophagy proteins might be targetable by extant or future classes of pharmacologic agents. We conclude by briefly exploring non-canonical roles for subsets of the key autophagy proteins in cellular processes, and how these might impact upon cancer.  相似文献   

18.
The COP9 signalosome (CSN) is an evolutionarily conserved multiprotein complex with a role in the regulation of cullin-RING type E3 ubiquitin ligases (CRLs). CSN exerts its function on E3 ligases by deconjugating the ubiquitin-related protein NEDD8 from the CRL cullin subunit. Thereby, CSN has an impact on multiple CRL-dependent processes. In recent years, advances have been made in understanding the structural organisation and biochemical function of CSN: Crystal structure analysis and mass spectrometry-assisted studies have come up with first models of the pair-wise and complex interactions of the 8 CSN subunits. Based on the analysis of mutant phenotypes, it can now be taken as an accepted fact that – at least in plants –the major biochemical function of CSN resides in its deneddylation activity, which is mediated by CSN subunit 5 (CSN5). Furthermore, it could be demonstrated that CSN function and deneddylation are required but not essential for CRL-mediated processes, and models for the role of neddylation and deneddylation in controlling CRL activity are emerging. Significant advances have also been made in identifying pathways that are growth restricting in the Arabidopsis csn mutants. Recently it has been shown that a G2 phase arrest, possibly due to genomic instability, restricts growth in Arabidopsis csn mutants. This review provides an update on recent advances in understanding CSN structure and function and summarises the current knowledge on its role in plant development and cell cycle progression.  相似文献   

19.
Cullin-RING ligases (CRLs) regulate diverse cellular functions such as cell cycle progression and cytokine signaling by ubiquitinating key regulatory proteins. The activity of CRLs is controlled by Nedd8 modification of the cullin subunits. Recent reports have suggested that CAND1, which specifically binds to unmodified CUL1 but not to neddylated one, is required for the in vivo function of SCFs, the CUL1-containing CRLs. We show here that CAND1 and COP9 signalosome (CSN), the major deneddylase of cullins, bind to unneddylated CUL1 in a mutually exclusive way. The suppression of CAND1 expression by small inhibitory RNA enhanced the interaction between CUL1 and CSN, suggesting that CAND1 inhibited the binding of CSN to CUL1. We found that the binding of CSN to CUL1 required the four helix bundle in CUL1 C-terminal domain, which was wrapped around by CAND1 in the CAND1-CUL1-Rbx1 complex. CAND1 greatly facilitated CSN-mediated deneddylation of CUL1 in vitro, which was dependent on its binding to CUL1. Our data suggest that enhancement of CSN-mediated deneddylation by CAND1 may contribute to its function as a positive regulator of SCFs in vivo.  相似文献   

20.
E-cadherin 参与形成细胞间黏附性连接,是胚胎发育过程中的一个关键因子。越来越多的研究表明,E-cadherin 在肿瘤的发生发 展过程中也发挥了至关重要的作用。在生物体内,E-cadherin 的表达和功能受到多个水平、多重因素的调控,而 E-cadherin 又可以影响 多条重要信号通路的活性,参与到多种生理病理过程中。E-cadherin 下调造成细胞间黏附性连接减少、极性减弱,细胞由上皮样转变为间 质样,这一变化是上皮间质转化(EMT)的重要标志之一。E-cadherin 与多种肿瘤的发生有一定的相关性。同时 E-cadherin 下调所引起 的 EMT 促进肿瘤细胞的迁移运动,肿瘤细胞侵袭力增强,促进转移的发生。近年来,大量研究关注到 E-cadherin 对肿瘤细胞的耐药及干 细胞特性的获得都有影响。综述 E-cadherin 在肿瘤发生发展中的作用,探讨以 E-cadherin 为靶点的肿瘤治疗的现状及展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号