首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Breton S  Burger G  Stewart DT  Blier PU 《Genetics》2006,172(2):1107-1119
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.  相似文献   

2.
P. D. Rawson  C. L. Secor    T. J. Hilbish 《Genetics》1996,144(1):241-248
Blue mussels in the Mytilus edulis species complex have a doubly uniparental mode of mtDNA inheritance with separate maternal and paternal mtDNA lineages. Female mussels inherit their mtDNA solely from their mother, while males inherit mtDNA from both parents. In the male gonad the paternal mtDNA is preferentially replicated so that only paternal mtDNA is transmitted from fathers to sons. Hybridization is common among differentiated blue mussel taxa; whenever it involves M. trossulus, doubly uniparental mtDNA inheritance is disrupted. We have found high frequencies of males without and females with paternal mtDNA among hybrid mussels produced by interspecific matings between M. galloprovincialis and M. trossulus. In contrast, hybridization between M. galloprovincialis and M. edulis does not affect doubly uniparental inheritance, indicating a difference in the divergence of the mechanisms regulating mtDNA inheritance among the three blue mussel taxa. Our data indicate a high frequency of disrupted mtDNA transmission in F(1) hybrids and suggest that two separate mechanisms, one regulating the transmission of paternal mtDNA to males and another inhibiting the establishment of paternal mtDNA in females, act to regulate doubly uniparental inheritance. We propose a model for the regulation of doubly uniparental inheritance that is consistent with these observations.  相似文献   

3.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.  相似文献   

4.
Blue mussels of the genus Mytilus form extensive hybrid zones in the North Atlantic and elsewhere where the distributions of different species overlap. Mytilus species transmit both maternal and paternal mtDNA through egg and sperm, respectively, a process known as doubly uniparental inheritance (DUI), and some females produce offspring with extremely biased sex ratios. These two traits have been shown to be linked and maternally controlled, with sex determination involving nuclear–cytoplasmic interactions. Hybridization has been shown to disrupt DUI mitochondrial inheritance and sex ratio bias; however, the effect of hybridization on reproductive fitness has not previously been examined. We investigated this effect in M. edulis × M. trossulus crosses through histological examination of mature F1 progeny, and spawning of F1 hybrids to monitor survival of their progeny through to the D stage of larval development. For progeny produced from mothers with a strong bias toward female offspring (often 100%) in pure-bred crosses, there was a clear breakdown in female dominance of progeny and significantly more hermaphrodites in the hybrid crosses produced from sperm with the M-tr1 mitotype. We also found significant sex-specific differences among hybrid progeny, with females producing normal eggs while males and hermaphrodites evidenced impaired gonadal development with significantly greater numbers of Sertoli cells, phagocytic hemocytes, and degenerating germ cells, all associated with gonad resorption. Males from crosses where DUI was disrupted and where male progeny were homoplasmic for the female mtDNA were the most severely compromised. Allelic incongruity between maternal and paternal mitotypes in hybrid crosses was associated with significant disruption of male gonadal development.  相似文献   

5.
Abstract The blue mussels Mytilus edulis and M. galloprovincialis hybridize in southwestern England. Within this hybrid zone environmentally based directional selection favors individuals with alleles specific to M. galloprovincialis . What forces are countering this directional selection and allowing for the maintenance of a stable hybrid population are unknown. We used both the genetics of recently settled larvae and a fine-scale model of the physical oceanography of the region to determine the patterns of larval dispersal throughout the hybrid zone and the bordering parental populations. Evidence from both the model and the genetics suggests that the hybrid zone lies between two barriers to dispersal. Start Point separates the M. edulis population from the hybrid zone and allows minimal dispersal from the hybrid zone into the M. edulis population, but none in the other direction. Likewise, the M. galloprovincialis populations along the northern coast of Cornwall regularly receive immigrating larvae from the hybrid zone, but larvae from the M. galloprovincialis population do not enter the hybrid zone. However, larvae settling at hybrid zone sites have high frequencies of alleles specific to M. edulis , suggesting that reproductive barriers, selection in the larval stage, or gene flow from an undetermined source is effectively balancing the directional selection observed in the adults.  相似文献   

6.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.  相似文献   

7.
Previous surveys of allozyme variation in smooth-shell Mytilus spp. mussels have reported the presence in the Southern Hemisphere of both Mytilus edulis and Mytilus galloprovincialis mussels. In the present study, nuclear DNA markers mac-1 and Glu-5 '/ Glu-3 ', both diagnostic for Northern-Hemisphere M. edulis and M. galloprovincialis , were used to further characterize the nuclear genomes of M. edulis from Kerguelen and M. galloprovincialis from Tasmania. Genomic reticulation was observed, with typical M. edulis allelomorphs fixed in both populations at locus mac-1 whereas, at locus Glu-5 '/ Glu-3 ', allelomorphs characteristic of M. galloprovincialis were present in Kerguelen and nearly fixed in Tasmania. Kerguelen mussels had a genome of mixed M. edulis and M. galloprovincialis ancestry without evidence of barriers to merging as shown by Hardy–Weinberg and linkage equilibrium. Tasmanian mussels possessed a predominantly M. galloprovincialis genomic background introgressed by M. edulis allelomorphs at locus mac-1 . Genetic drift superimposed on ancient hybridization and introgression may explain the genomic reticulation observed in both Kerguelen and Tasmanian mussels. There was no evidence of a recent introduction of Northern-Hemisphere M. galloprovincialis or M. edulis to Kerguelen or Tasmania.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 747–754.  相似文献   

8.
Mussels of the genus Mytilus have distinct and highly diverged male and female mitochondrial DNA (mtDNA) genomes with separate routes of inheritance. Previous studies of European populations of Mytilus trossulus demonstrated that 33% of males are heteroplasmic for a second mtDNA genome of increased length and that hybridization with Mytilus edulis does not block mtDNA introgression, in contrast to reports for American populations. Here, we demonstrate that the female mtDNA type of M. edulis has replaced the resident female mtDNA type of European M. trossulus. This is supported by COIII sequence data indicating that the female mtDNA of European M. trossulus is very similar to that of M. edulis and that in phylogenetic trees, the mtDNAs of these two species cluster together but separately from American M. trossulus sequences, the latter not being disturbed by introgressive hybridization. We also provide evidence that the mtDNA genome of increased length found in heteroplasmic males of European M. trossulus derives from a recent partition of an introgressed M. edulis female type into the male route of transmission. Neutrality tests reveal that European populations of M. trossulus display an excess of replacement polymorphism within the female mtDNA type with respect to conspecific American populations, as well as a significant excess of rare variants, of a similar magnitude to those previously reported for the invading European M. edulis mtDNA. Results are consistent with a nearly neutral model of molecular evolution and suggest that selection acting on European M. trossulus mtDNA is largely independent of the nuclear genetic background.  相似文献   

9.
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and Mytilus galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; Mytilus edulis and Mytilus trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.  相似文献   

10.
Mytilus galloprovincialis is one of three smooth shelled blue mussel species belonging to the Mytilus edulis species complex. Naturally occurring and introduced populations of M. galloprovincialis are widely distributed throughout many regions of the globe. Mytilus galloprovincialis includes morphologically indistinguishable Northern and Southern hemisphere mtDNA lineages that have been separated for ~1 my. To distinguish recently introduced Northern M. galloprovincialis from resident Southern M. galloprovincialis in New Zealand, we developed a 16s rRNA RFLP assay. We compared RFLP assignments of 178 mussels with those generated from a 16s rRNA sequence-estimated phylogeny. All mussels were correctly assigned by the RFLP to their sequence-based phylogenetic placement. This assay allows the rapid identification of Northern and Southern hemisphere M. galloprovincialis and will provide an important tool for monitoring human mediated introductions of otherwise cryptic lineages.  相似文献   

11.
Steinhausia mytilovum is a globally distributed microsporidian parasite which infects the oocytes of the blue mussels Mytilus edulis and M. galloprovincialis. Despite the intensive monitoring effort made on mussel populations, the parasite has not previously been reported in France. We report herein on the occurrence of S. mytilovum in Mytilus sp. from 1 cultured and 2 natural populations on the northern coast of France, thus extending the parasite's known distribution northwards. We also report on the observation in 1989 of S. mytilovum in M. galloprovincialis from the Golfe de Fos area in the Mediterranean Sea (South of France). S. mytilovum was observed in the European hybrid zone between M. edulis and M. galloprovincialis, which therefore renders the exact taxonomic status of the infected hosts unknown. The prevalence of the parasite was low, which suggests that its effect on mussel populations was probably limited.  相似文献   

12.
Mitochondrial DNA (mtDNA) was thought to be inherited maternally in animals, although paternal leakage has been reported in mice and Drosophila. Recently, direct evidence of extensive paternal inheritance of mtDNA has been found in the marine mussel Mytilus. We give evidence that whereas female mussels are homoplasmic for a genome that is transmitted to eggs, male mussels are heteroplasmic for this genome and for a second genome that is transmitted preferentially to sperm. The results provide support for the existence of separate male and female routes of mtDNA inheritance in mussels. The two genomes show a base sequence divergence exceeding 20% at three protein coding genes, consistent with long term maintenance of the heteroplasmic state. We propose that the two genomes differ in fitness in males and females, possibly as a result of interaction with nuclear genes.  相似文献   

13.
Samples of mussels ( Mytilus ) were collected from 17 localities within hybrid zones of Mytilus edulis and Mytilus galloprovincialis in south-west and north-east England. The study of two polymorphic allozyme loci ( esterase-D and octopine dehydrogenase ), which are partially diagnostic for the two forms of mussel, reveal the existence of widespread length-dependent allele frequency variation. Larger mussels tend to have a higher frequency of alleles characteristically at high frequency in Mytilus galloprovincialis. Also at a given shell length galloprovincialis alleles have a higher frequency higher up the shore. Computer simulation is used to demonstrate that length-dependent variation may be generated not only by differential mortality but also by differential growth and in models including or excluding immigration. Evidence supports the hypothesis that selective mortality acting in favour of the galloprovincialis phenotype within hybrid populations in Britain is balanced by immigration of the more abundant Mytilus edulis.  相似文献   

14.
Hybrid zones are fascinating systems to investigate the structure of genetic barriers. Marine hybrid zones deserve more investigation because of the generally high dispersion potential of planktonic larvae which allows migration on scales unrivalled by terrestrial species. Here we analyse the genetic structure of the mosaic hybrid zone between the marine mussels Mytilus edulis and M. galloprovincialis, using three length-polymorphic PCR loci as neutral and diagnostic markers on 32 samples along the Atlantic coast of Europe. Instead of a single genetic gradient from M. galloprovincialis on the Iberian Peninsula to M. edulis populations in the North Sea, three successive transitions were observed in France. From South to North, the frequency of alleles typical of M. galloprovincialis first decreases in the southern Bay of Biscay, remains low in Charente, then increases in South Brittany, remains high in most of Brittany, and finally decreases again in South Normandy. The two enclosed patches observed in the midst of the mosaic hybrid zone in Charente and Brittany, although predominantly M. edulis-like and M. galloprovincialis-like, respectively, are genetically original in two respects. First, considering only the various alleles typical of one species, the patches show differentiated frequencies compared to the reference external populations. Second, each patch is partly introgressed by alleles of the other species. When introgression is taken into account, linkage disequilibria appear close to their maximum possible values, indicating a strong genetic barrier within all transition zones. Some pre- or postzygotic isolation mechanisms (habitat specialization, spawning asynchrony, assortative fertilization and hybrid depression) have been documented in previous studies, although their relative importance remains to be evaluated. We also provided evidence for a recent migratory 'short-cut' connecting M. edulis-like populations of the Charente patch to an external M. edulis population in Normandy and thought to reflect artificial transfer of spat for aquaculture.  相似文献   

15.
Distinct gender-associated mitochondrial DNA (mtDNA) lineages (i.e., lineages which are transmitted either through males or through females) have been demonstrated in two families of bivalves, the Mytilidae (marine mussels) and the Unionidae (freshwater mussels), which have been separated for more than 400 Myr. The mode of transmission of these M (for male-transmitted) and F (for female-transmitted) molecules has been referred to as doubly uniparental inheritance (DUI), in contrast to standard maternal inheritance (SMI), which is the norm in animals. A previous study suggested that at least three origins of DUI are required to explain the phylogenetic pattern of M and F lineages in freshwater and marine mussels. Here we present phylogenetic evidence based on partial sequences of the cytochrome c oxidase subunit I gene and the 16S RNA gene that indicates the DUI is a dynamic phenomenon. Specifically, we demonstrate that F lineages in three species of Mytilus mussels, M. edulis, M. trossulus, and M. californianus, have spawned separate lineages which are now associated only with males. This process is referred to as "masculinization" of F mtDNA. By extension, we propose that DUI may be a primitive bivalve character and that periodic masculinization events combined with extinction of previously existing M types effectively reset the time of divergence between conspecific gender-associated mtDNA lineages.   相似文献   

16.
Assortative mating (prezygotic isolation) and reduced hybrid fitness (postzygotic isolation) are typically invoked to explain the stability of hybrid zones. In the tension zone model, these factors work in opposition to migration, which promotes genetic homogeneity. Many marine animals migrate over long distances through a planktonic larval stage. Therefore, strong reproductive isolation is needed to maintain stable marine hybrid zones. However, surprisingly little is known about mating preferences and hybrid fitness in marine organisms. Smooth-shelled mussels (Mytilus spp.) form a well-known species complex, with hybridization over extensive areas such as the contact zone of M. edulis and M. galloprovincialis around European Atlantic coasts. This paper reports direct experimental evidence of assortative fertilization, hybrid larval inviability, and early heterosis for growth rate in M. edulis and M. galloprovincialis. Four crosses between pure M. edulis and M. galloprovincialis were analyzed with a new polymerase-chain-reaction-based diagnostic marker. Gamete competition between taxa was allowed in two out of the four crosses. Genotype frequencies observed at an early stage (36 h after fertilization) unambiguously revealed assortative fertilization when gamete competition was allowed. A significant reduction in hybrid viability was subsequently observed during the larval stage. At the same stage an antagonistic effect, heterosis, was observed on growth rate. However, even if heterosis is observed in the F1, it is expected to vanish in subsequent hybrid generations. Although specialization for different habitats and asynchronous spawning have been mentioned as factors contributing to the maintenance of the blue mussel hybrid zone in Europe, we argue that assortative fertilization and reduced hybrid fitness are important factors that also contribute to the stabilization of this zone. These results emphasize that multiple factors may act concomitantly in a barrier to gene flow, especially in complex life cycles. Furthermore, they show that assortative mating through gamete preference, as already demonstrated for sea urchins, may play a role in speciation processes taking place in the sea.  相似文献   

17.
Marine mussels of the genus Mytilus have two types of mitochondrial DNA with separate paternal and maternal inheritance. Females are homoplasmic for an F genome that is transmitted to all offspring, whereas males are heteroplasmic for this F genome and for a highly diverged (> 20%) M genome that is transmitted only to sons. Here we provide phylogenetic evidence based on lrRNA sequence data that most of the paternal genomes in European M. trossulus have an introgressive female M. edulis origin and are nearly indistinguishable in sequence from F types of M. trossulus. This observation is best explained by the hypothesis that introgressed F type molecules have recently invaded the paternal route and have assumed the role of M molecules, then resetting to zero the time of sequence divergence between M and F lineages. European M. trossulus shows a high prevalence of males heteroplasmic for three different mitochondrial DNA types all having the same two paternal types and the same maternal type, consistent with paternal co-transmission of multiple genomes. Co-transmission of the same genomes must apparently operate uninterruptedly for several generations in spite of the very different evolutionary origin of the specific molecules that are transmitted paternally and maternally in European M. trossulus.  相似文献   

18.
Mussels of the genus Mytilus have two types of mitochondrial DNA (mtDNA). The M type is transmitted paternally and the F type is transmitted maternally. RFLP analysis is used to assess phylogenetic relationships and nucleotide diversity and divergence for both mtDNA genomes in European populations of M. edulis and Atlantic and Mediterranean forms of M. galloprovincialis. Ten restriction endonucleases were used to assay variation in regions of the ND2 and COIII genes for a total of 77 individuals. F and M genomes show a concordant phylogenetic split into two major divergent clades, one specific to Mediterranean M. galloprovincialis and the other containing haplotypes from the three taxa. For both genomes, the geographical distribution of mtDNA variation suggests: (i) extensive levels of mtDNA introgression; (ii) asymmetric mtDNA gene flow from Atlantic to Mediterranean populations; and (iii) recurrent historical hybridization events. Significantly higher mtDNA diversity and divergence are observed for the M than F genome in all three Mytilus taxa, although the evolutionary forces responsible for these differences cannot be resolved. The extensive mtDNA gene flow between European Mytilus taxa conflicts with the restricted mtDNA introgression observed in American mussels , implying geographical variation in the nature of nuclear/mtDNA interactions regulating biparental inheritance.  相似文献   

19.
Smooth-shelled mussels, Mytilus spp., have an antitropical distribution. In the Northern Hemisphere, the M. edulis complex of species is composed of three genetically well delineated taxa: M. edulis, M. galloprovincialis and M. trossulus. In the Southern Hemisphere, morphological characters, allozymes and intron length polymorphisms suggest that Mytilus spp. populations from South America and Kerguelen Islands are related to M. edulis and those from Australasia to M. galloprovincialis. On the other hand, a phylogeny of the 16S rDNA mitochondrial locus demonstrates a clear distinctiveness of southern mussels and suggests that they are related to Mediterranean M. galloprovincialis. Here, we analysed the faster-evolving cytochrome oxidase subunit I locus. The divergence between haplotypes of populations from the two hemispheres was confirmed and was found to predate the divergence between haplotypes of northern M. edulis and M. galloprovincialis. In addition, strong genetic structure was detected among the southern samples, revealing three genetic entities that correspond to (1) South America and Kerguelen Island, (2) Tasmania, (3) New Zealand. Using the trans-Arctic interchange as a molecular clock calibration, we estimated the time since divergence of populations from the two hemispheres to be between 0.5 million years (MY) and 1.3 MY (average 0.84 MY). The contrasting patterns observed for the nuclear and the organelle genomes suggested two alternative, complex scenarios: two trans-equatorial migrations and the existence of differential barriers to mitochondrial and nuclear gene flow, or a single trans-equatorial migration and a view of the composition of the nuclear genome biased by taxonomic preconception.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号