首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR), which plays vital roles during embryogenesis. Activating FGFR mutations cause several craniosynostoses and dwarfism syndromes in humans. Here we show that the Xenopus homolog of mammalian FRS-2 (XFRS2) is essential for the induction of oocyte maturation by an XFGFR1 harboring an activating mutation (XFGFR1act). Using a dominant-negative form of kinase suppressor of Ras, we show the Mek activity is required for germinal vesicle breakdown (GVBD) induced by co-expression of XFGFR1act and XFRS2, but this activity is not required for progesterone-induced GVBD. Furthermore, Mek/MAPK activity is critical for the induction and/or maintenance of H1 kinase activity at metaphase of meiosis II in progesterone-treated oocytes. An activated XFGFR1 containing a mutation in the phospholipase Cgamma binding site (XFGFR1actY672F) displayed a reduced ability to induce cell-cycle progression in oocytes, suggesting phospholipase Cgamma may not be necessary but that it augments XFGFR signaling in this system. Oocytes co-expressing XFGFR1act and XFRS2 showed substantial H1 kinase activity, but this activity was blocked when the oocytes were treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Although phosphatidylinositol 3-kinase activity is essential for XFGFR1act/XFRS2-induced oocyte maturation, this activity is not required for maturation induced by progesterone. Finally, ectopic expression of Xspry2, a negative regulator of XFGFR signaling, greatly reduced MAPK activation and GVBD induced by the expression of either XFGFR1act plus XFRS2 or activated Ras (H-RasV12). In contrast, Xspry2 did not prevent GVBD induced by an activated form of Raf1, suggesting that Xspry2 exerts its inhibitory function upstream or parallel to Raf and downstream of Ras.  相似文献   

2.
The role of Raf and MAPK (mitogen-activated protein kinase) during the maturation of Xenopus oocytes was investigated. Treatment of oocytes with progesterone resulted in a shift in the electrophoretic mobility of Raf at the onset of germinal vesicle breakdown (GVBD), which was coincident with the activation of MAPK. Expression of a kinase- defective mutant of the human Raf-1 protein (KD-RAF) inhibited progesterone-mediated MAPK activation. MAPK activation was also inhibited by KD-Raf in oocytes expressing signal transducers of the receptor tyrosine kinase (RTK) pathway, including an activated tyrosine kinase (Tpr-Met), a receptor tyrosine kinase (EGFr), and Ha-RasV12. KD- RAF completely inhibited GVBD induced by the RTK pathway. In contrast, KD-RAF did not inhibit GVBD and the progression to Meiosis II in progesterone-treated oocytes. Injection of Mos-specific antisense oligodeoxyribonucleotides inhibited MAPK activation in response to progesterone and Tpr-Met, but failed to inhibit these events in oocytes expressing an oncogenic deletion mutant of Raf-1 (delta N'Raf). Injection of antisense oligodeoxyribonucleotides to Mos also reduced the progesterone- and Tpr-Met-induced electrophoretic mobility shift of Xenopus Raf. These results demonstrate that RTKs and progesterone participate in distinct yet overlapping signaling pathways resulting in the activation of maturation or M-phase promoting factor (MPF). Maturation induced by the RTK pathway requires activation of Raf and MAPK, while progesterone-induced maturation does not. Furthermore, the activation of MAPK in oocytes appears to require the expression of Mos.  相似文献   

3.
Fully grown immature oocytes acquire the ability to be fertilized with sperm after meiotic maturation, which is finally accomplished by the formation and activation of the maturation-promoting factor (MPF). MPF is the complex of Cdc2 and cyclin B, and its function in promoting metaphase is common among species. The Mos/mitogen-activated protein kinase (MAPK) pathway is also commonly activated during vertebrate oocyte maturation, but its function seems to be different among species. We investigated the function of the Mos/MAPK pathway during oocyte maturation of the frog Rana japonica. Although MAPK was activated in accordance with MPF activation during oocyte maturation, MPF activation and germinal vesicle breakdown (GVBD) was not initiated when the Mos/MAPK pathway was activated in immature oocytes by the injection of c-mos mRNA. Inhibition of Mos synthesis by c-mos antisense RNA and inactivation of MAPK by CL100 phosphatase did not prevent progesterone-induced MPF activation and GVBD. However, continuous MAPK activation and MAPK inhibition through oocyte maturation accelerated and delayed MPF activation, respectively. Furthermore, Mos induced a low level of cyclin B protein synthesis in immature oocytes without the aid of MAPK. These results suggest that the general function of the Mos/MAPK pathway, which is not essential for MPF activation and GVBD in Rana oocytes, is to enhance cyclin B translation by Mos itself and to stabilize cyclin B protein by MAPK during oocyte maturation.  相似文献   

4.
Mos plays a crucial role in meiotic cell division in vertebrates. In Xenopus, Mos is involved in the initiation of oocyte maturation as an initiator and in the arrest at the metaphase II stage (MII) as a component of the cytostatic factor (CSF). The function of Mos is mediated by MAP kinase (MAPK). We investigated the function of the Mos/MAPK pathway during goldfish oocyte maturation induced by 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP), a natural maturation-inducing hormone in fishes. Mos was absent in immature goldfish oocytes. It appeared before the onset of germinal vesicle breakdown (GVBD), increased to a maximum in mature oocytes arrested at MII and disappeared after fertilization. MAPK was activated after Mos synthesis but before maturation-promoting factor (MPF) activation, and its activity reached maximum at MII. Injection of either Xenopus or goldfish c-mos mRNA into one blastomere of 2-cell-stage Xenopus and goldfish embryos induced metaphase arrest, suggesting that goldfish Mos has a CSF activity. Injection of constitutively active Xenopus c-mos mRNA into immature goldfish oocytes induced MAPK activation, but neither MPF activation nor GVBD occurred. Conversely, the injection of goldfish c-mos antisense RNA inhibited both Mos synthesis and MAPK activation in the 17α,20β-DP-treated oocytes, but these oocytes underwent GVBD. These results indicate that the Mos/MAPK pathway is not essential for initiating goldfish oocyte maturation despite its general function as a CSF. We discuss the general role of Mos/MAPK during oocyte maturation, with reference to the difference in contents of inactive MPF (pre-MPF) stored in immature oocytes. Received: 10 February 2000 / Accepted: 25 April 2000  相似文献   

5.
Resumption of meiosis from diplotene arrest during the first meiotic prophase in vertebrate oocytes is universally controlled by MPF, a heterodimer of Cdk1 and cyclin B. Activation of MPF depends on the withdrawal of Cdk1 inhibition by Wee1/Myt1 kinase on the one hand and the activation of Cdk1 by Cdc25 phosphatase on the other. It is relevant to know whether both these pathways are necessary to rescue diplotene arrest or if either one of them is sufficient. In MIH (17alpha, 20beta dihydroxy-4-pregnen-3-one) incubated perch (Anabas testudineus) oocytes we have examined these possibilities. Perch oocyte extract following MIH incubation showed a significant increase in Myt1 phosphorylation from 12 to 16 hr indicating its progressive deactivation. MIH induced Mos expression markedly increased at 16 hr effecting 95% GVBD. Cycloheximide inhibited MIH induced Mos expression and its phosphorylation, which in turn reduced Myt1 phosphorylation and GVBD. Myt1 phosphorylation was blocked in Mos immunodepleted oocytes. All these suggest the involvement of Mos in Myt1 phosphorylation. Oocytes incubated in MIH for 16 hr activated Cdc25, but such activation could not rescue the inhibition of GVBD due to Myt1 in Mos immunodepleted oocytes. Blocking Cdc25 with an antisense oligo significantly inhibited GVBD even though Myt1 remained deactivated during this period. Taken together, our findings indicate that MIH requires both pathways for perch oocyte maturation: the expression and activation of Mos, which is linked to Myt1 deactivation on the one hand, and the activation of Cdc25 on the other, as blocking either pathway compromised G2-M transition in perch oocytes.  相似文献   

6.
It is known that amphibian oocytes undergo maturation through the formation and activation of maturation-promoting factor (MPF) in response to stimulation by the maturation-inducing hormone progesterone; however, the signal transduction pathway that links the hormonal stimulation on the oocyte surface to the activation of MPF in the oocyte cytoplasm remains a mystery. The aim of this study was to investigate whether the signal transduction mediated by phosphatidylinositol 3-kinase (PI3K), protein kinase B (PKB), and glycogen synthase kinase 3beta (GSK3beta) is involved in progesterone-induced oocyte maturation in the Japanese brown frog, Rana japonica. Inhibitors of PI3K, wortmannin and LY294002, inhibited progesterone-stimulated germinal vesicle breakdown (GVBD) only when the oocytes were treated at the initial phase of maturation, suggesting that PI3K is involved in the progesterone-induced maturation of Rana oocytes. However, we also obtained results suggesting that PKB and GSK3beta are not involved in Rana oocyte maturation. A constitutively active PKB expressed in the oocytes failed to induce GVBD in the absence of progesterone despite its high level of kinase activity. A Myc-tagged PKB expressed in the oocytes (used to monitor endogenous PKB activity) was not activated in the process of progesterone-induced oocyte maturation. Overexpression of GSK3beta, which is reported to retard the progress of Xenopus oocyte maturation, had no effect on Rana oocyte maturation. On the basis of these results, we propose that PI3K is involved in the initiation of Rana oocyte maturation, but that neither PKB nor GSK3beta is a component of the PI3K signal transduction pathway.  相似文献   

7.
8.
9.
Fully grown Xenopus oocytes are physiologically arrested at the G2/prophase border of the first meiotic division. Addition in vitro of progesterone or insulin causes release of the G2/prophase block and stimulates meiotic cell division of the oocyte, leading to maturation of the oocyte into an unfertilized egg. The possibility that the products of polyphosphoinositide breakdown, diacylglycerol and inositol-1,4,5-trisphosphate (IP3-, are involved in oocyte maturation was investigated. Microinjection of IP3 into oocytes just prior to addition of progesterone or insulin accelerated the rate of germinal vesicle breakdown (GVBD) by up to 25%. Half-maximal acceleration occurred at an intracellular IP3 concentration of 1 microM. Treatment of oocytes with the diacylglycerol analog and tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA) induced GVBD in the absence of hormone. Half-maximal induction of GVBD occurred with 150 nM TPA and was blocked by pretreatment of oocytes with 10 nM cholera toxin. Microinjection of highly purified protein kinase C from rat brain into oocytes did not induce maturation but markedly accelerated the rate of insulin-induced oocyte maturation. However, injection of the enzyme had no effect on progesterone action. In oocytes with a basal intracellular pH below 7.6, TPA increased intracellular pH, but GVBD occurred with TPA in Na-substituted medium. Neomycin, a putative inhibitor of polyphosphoinositide breakdown, reversibly inhibited insulin- but not progesterone-induced maturation. Half-maximal inhibition occurred at 1.6 mM neomycin. These results indicate that protein kinase C is capable of regulating oocyte maturation in Xenopus.  相似文献   

10.
In ovarian follicles of Rana pipiens, frog pituitary homogenates (FPH) elevate intrafollicular progesterone levels which in turn is thought to induce meiotic resumption in the prophase I arrested oocytes. Calcium plays a role in FPH and steroid-provoked responses in the somatic and gametic components of the follicle, presumably via effects exerted at the plasma membrane of their respective target cells. Many membrane active hormones which utilize Ca2+ in their intracellular transduction also provoke membrane phosphoinositide hydrolysis yielding inositol triphosphate (IP3) and diacyl glycerol (DAG), an activator of the CA2+-dependent protein kinase C (PKC). The actions of phorbol 12-myristate 13-acetate (TPA), a potent synthetic activator of PKC, on progesterone production and oocyte maturation was examined in in vitro cultured ovarian follicles. TPA induced germinal vesicle breakdown (GVBD) in intact follicles and in oocytes denuded of somatic components, while the inactive compound phorbol 13-monoacetate was ineffective. Further, TPA induction of GVBD exhibited similarities to progesterone-induced GVBD, being inhibited by treatments which elevate cAMP or inhibit protein synthesis. TPA alone did not elevate intrafollicular or medium progesterone levels, as occurred in FPH-treated follicles. TPA partially inhibited intrafollicular progesterone accumulation induced by FPH or treatments which elevate cAMP levels. These data suggest that activation of PKC plays a role in oocyte maturation independent of follicular progesterone production as occurs in response to FPH. Further, it appears that the somatic cells of the amphibian follicle also possess PKC which when activated, antagonizes cAMP generating pathway in these cells. Results indicate that protein kinase can influence oocyte maturation in Rana follicular oocytes by several mechanisms.  相似文献   

11.
In Xenopus oocytes, initiation of maturation is dependent on reduction of cyclic AMP-dependent protein kinase (PKA) activity and the synthesis of the mos proto-oncogene product. Mos is required during meiosis I for the activation of both maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK). Here we show that injection of the catalytic subunit of PKA (PKAc) prevented progesterone-induced synthesis of endogenous Mos as well as downstream MPF and MAPK activation. However, PKAc did not prevent injected soluble Mos product from activating MAPK. While MAPK is activated during Mos-PKAc coinjection, attendant MPF activation is blocked. Additionally, PKAc caused a potent block in the electrophoretic mobility shift of cdc25 that is associated with phosphatase activation. This inhibition of cdc25 activity was not reversed by progesterone, Mos, or MPF. We conclude that PKAc acts as a negative regulator at several points in meiotic maturation by preventing both Mos translation and MPF activation.  相似文献   

12.
Maturing amphibian oocytes undergo drastic morphological changes, including germinal vesicle breakdown (GVBD), chromosome condensation, and spindle formation in response to progesterone. Two kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), are involved in these changes, but their precise roles are unknown. Unlike in Xenopus oocytes, discrimination of the functions of MAPK and MPF in Rana oocytes is easy owing to the lack of pre-MPF. We investigated the roles of these kinases by careful observations of chromosomes and microtubules in Rana oocytes. MPF and MAPK activities were manipulated by treatment with progesterone, c-mos mRNA, or cyclin B mRNA in combination with MAPK kinase inhibitors. Activation of one kinase without activation of the other induced only limited events; GVBD was induced by MPF without MAPK, and reorganization of microtubules at GVBD was induced by MAPK without MPF, but other events were not induced. In contrast, coactivation of MPF and MAPK by injection of c-mos and cyclin B mRNA promoted almost all of the morphological changes that occur during maturation without progesterone, indicating that these are controlled by cooperation of MPF and MAPK. The results revealed the functions of MAPK and MPF in each process of sequential morphological changes during oocyte maturation.  相似文献   

13.
In Xenopus oocytes, the mos proto-oncogene product is required during meiosis I for the activation of maturation promoting factor (MPF) and the subsequent breakdown of the germinal vesicle (GVBD). In addition, the mos product has been shown to be a candidate "initiator" of meiotic maturation and is an active component of cytostatic factor (CSF), an activity responsible for metaphase II arrest. Here we demonstrate that pp39mos is required throughout oocyte maturation. We found that in progesterone stimulated oocytes, depletion of mos RNA immediately before GVBD terminally decreased MPF. Likewise, oocytes depleted of mos RNA and induced to mature with crude MPF proceeded through GVBD but lacked the MPF activity required to arrest mature oocytes at metaphase II. Thus, during maturation the mos product is required, directly or indirectly, to sustain MPF activity. On the other hand, mouse NIH/3T3 cells transformed by the constitutive expression of pp39mosxc possessed CSF activity but lacked constitutive levels of MPF or its associated histone H1 kinase activity. Moreover, cytosols prepared from transformed NIH/3T3 cells or Xenopus eggs had similar levels of CSF activity, but pp39mos levels were greater than 40-fold higher in the transformed cell extract. These analyses show that maintenance of CSF during interphase does not result in the maintenance of MPF.  相似文献   

14.
tpr-met, a tyrosine kinase oncogene, is the activated form of the met proto-oncogene that encodes the receptor for hepatocyte growth factor/scatter factor. The tpr-met product (p65tpr-met) was tested for its ability to induce meiotic maturation in Xenopus oocytes. While src and abl tyrosine kinase oncogene products have previously been shown to be inactive in this assay, p65tpr-met efficiently induced maturation-promoting factor (MPF) activation and germinal vesicle breakdown (GVBD) together with the associated increase in ribosomal S6 subunit phosphorylation. tpr-met-mediated MPF activation and GVBD was dependent on the endogenous c-mosxe, while the increase in S6 protein phosphorylation was not significantly affected by the loss of mos function. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine inhibits tpr-met-mediated GVBD at concentrations that prevent insulin- but not progesterone-induced oocyte maturation. Moreover, maturation triggered by tpr-met is also inhibited by cyclic AMP-dependent protein kinase. This is the first demonstration that a tyrosine kinase oncogene product, p65tpr-met, can induce meiotic maturation in Xenopus oocytes and activate MPF through a mos-dependent pathway, possibly the insulin or insulinlike growth factor 1 pathway.  相似文献   

15.
Numerous studies have demonstrated that activation of the mitogen-activated protein (MAP) kinase is involved in the maturation of oocytes. In this study, the expression and phosphorylation of MAP kinase and p90rsk, one of the substrates of MAP kinase, during rabbit oocyte maturation were studied. The results showed that MAP kinase phosphorylation began to occur after germinal vesicle breakdown (GVBD) and the active form was maintained until metaphase II. p90rsk was also activated after GVBD following MAP kinase activation. Immunofluorescent analysis showed that p90rsk was enriched in the nuclear area after GVBD and was gradually localised to the spindle. When GVBD was inhibited by increased cAMP or decreased protein kinase C activity, the phosphorylation of both MAP kinase and p9rsk was blocked. Our data suggest that (1) MAP kinase/p90rsk activation is not necessary for GVBD, but plays an important role in the post-GVBD events including spindle assembly in rabbit oocytes; and (2) MAP kinase/p9rsk activation is down-regulated by cAMP and up-regulated byprotein kinase C in cumulus-enclosed rabbit oocytes.  相似文献   

16.
The capability of oocyte cytoplasm to induce chromosome condensation was studied by transplantation of isolated brain nuclei into Rana pipiens oocytes induced to undergo maturation in vitro by progesterone treatment. It was found that the chromosome condensation activity (CCA) first appeared in the cytoplasm of maturing oocytes shortly after germinal vesicle breakdown (GVBD), persisted in fully mature oocytes, but rapidly disappeared when the oocytes were artificially activated. A comparison of the time course of the oocyte chromosome condensation cycle and of brain chromosome condensation in maturing and activated oocytes revealed a close temporal correlation between the two, suggesting that both are under the control of the same cytoplasmic factor(s). Oocytes enucleated before GVBD always failed to develop CCA. The CCA could be restored in enucleated oocytes by injecting nucleoplasm obtained from oocytes that had not yet undergone GVBD although this same nucleoplasm was incapable of producing CCA when mixed with the cytoplasm of oocytes that had not reached the stage of GVBD. It was therefore suggested that the CCA had a dual origin involving both cytoplasmic maturation and GV materials.  相似文献   

17.
Ovarian oocytes of Rana dybowskii, isolated early in the hibernation period (late autumn), failed to mature, i.e., germinal vesicle breakdown (GVBD), in response to progesterone during in vitro follicle culture. Oocytes collected during the middle hibernation period matured in response to progesterone, whereas those collected late during the hibernation period (close to the breeding season) underwent spontaneous maturation without added hormone (Kwon et al., '89). The maturational response (GVBD) of oocytes, collected at the three stages of hibernation, to protein kinase C (PKC) activation was investigated and compared to that of progesterone stimulation. A phorbol ester, phorbol 12-myristate 13-acetate (TPA) was used for PKC activation. TPA addition to cultured follicles collected during the early or middle period of hibernation induced oocyte GVBD. The incidence of maturation (% GVBD) induced by TPA varied markedly between animals. TPA (10 microM) induced oocyte maturation in the presence or absence of follicle cells. The time course of the TPA-induced maturation was similar to that of progesterone-stimulated maturation (ED50, 7-9 h). TPA also accelerated the onset of maturation of the follicular oocytes exhibiting spontaneous in vitro maturation. Both TPA- and progesterone-stimulated maturation was blocked by treatment with cycloheximide (1 microgram/2 ml), forskolin (9 microM) (an adenylate cyclase stimulator), and verapamil (0.27 mM) (a calcium transport blocker). Treatment of oocytes with a calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) (100 microM) or a PKC inactivator 1-(5-isoquinolinylsulfonyl)-2-methyl-piperazine (H-7) (50 microM) likewise suppressed TPA- or progesterone-induced maturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Meiotic maturation of large, 1.2-1.4 mm in diameter, stage VI oocytes of Xenopus laevis can be induced to mature in vitro by exposure to progesterone or by microinjection of maturation-promoting factor (MPF). Small, 0.95 mm in diameter, stage IV oocytes do not respond to progesterone but do undergo germinal vesicle breakdown (GVBD) in response to microinjection of MPF. The possibility that small oocytes are nonresponsive to progesterone due to a specific defect in an event known to occur with large oocytes is investigated. Both large and small oocytes possess a plasma membrane steroid receptor (Mr = 110,000) as measured by photoaffinity labeling with [3H]R5020, but the density of receptors in small oocytes is only 20% of that in large oocytes. Adenylate cyclase activity stimulated by guanyl-5'-yl-imidodiphosphate is equally inhibited by steroid (50%) in plasma membranes from both large and small oocytes with an apparent IC50 of 2 X 10(-7) M progesterone. Microinjection of the heat-stable inhibitor protein of cAMP-dependent protein kinase induces GVBD in large but not in small oocytes. These results indicate that the nonresponsiveness of small, stage IV oocytes to progesterone is due to a deficiency in an event(s) subsequent to cAMP fluctuations but prior to MPF action.  相似文献   

19.
Cdc2-cyclin B triggers H3 kinase activation of Aurora-A in Xenopus oocytes   总被引:2,自引:0,他引:2  
Xenopus oocytes are arrested in meiotic prophase I and resume meiotic divisions in response to progesterone. Progesterone triggers activation of M-phase promoting factor (MPF) or Cdc2-cyclin B complex and neosynthesis of Mos kinase, responsible for MAPK activation. Both Cdc2 and MAPK activities are required for the success of meiotic maturation. However, the signaling pathway induced by progesterone and leading to MPF activation is poorly understood, and most of the targets of both Cdc2 and MAPK in the oocyte remain to be determined. Aurora-A is a Ser/Thr kinase involved in separation of centrosomes and in spindle assembly during mitosis. It has been proposed that in Xenopus oocytes Aurora-A could be an early component of the progesterone-transduction pathway, acting through the regulation of Mos synthesis upstream Cdc2 activation. We addressed here the question of Aurora-A regulation during meiotic maturation by using new in vitro and in vivo experimental approaches. We demonstrate that Cdc2 kinase activity is necessary and sufficient to trigger both Aurora-A phosphorylation and kinase activation in Xenopus oocyte. In contrast, these events are independent of the Mos/MAPK pathway. Aurora-A is phosphorylated in vivo at least on three residues that regulate differentially its kinase activity. Therefore, Aurora-A is under the control of Cdc2 in the Xenopus oocyte and could be involved in meiotic spindle establishment.  相似文献   

20.
H Kosako  Y Gotoh    E Nishida 《The EMBO journal》1994,13(9):2131-2138
MAP kinase kinase (MAPKK) has been identified as a protein factor that can induce phosphorylation and activation of inactive MAP kinase in vitro. In this study, we produced an anti-Xenopus MAPKK antibody that can specifically inhibit Xenopus MAPKK activity in vitro. Microinjection of this antibody into immature oocytes prevented progesterone-induced MAP kinase activation. Moreover, progesterone-induced histone H1 kinase activation and germinal vesicle breakdown (GVBD) were inhibited in the oocytes injected previously with this antibody. Furthermore, when a bacterially expressed Mos was introduced into immature oocytes, Mos-induced MAP kinase activation and GVBD were blocked in the oocytes injected with the anti-MAPKK antibody. These results show that MAPKK is responsible for the activation of MAP kinase in vivo and that the MAPKK/MAP kinase cascade plays a pivotal role in the MPF activation during the oocyte maturation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号