首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)2 is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo. We show that human GAPDH amyloid-like aggregate formation depends on the active site cysteine-152 (Cys-152) in vitro. In SH-SY5Y neuroblastoma, treatment with dopamine decreases the cell viability concentration-dependently (IC50 = 202 μm). Low concentrations of dopamine (50–100 μm) mainly cause nuclear translocation of GAPDH, whereas the levels of GAPDH aggregates correlate with high concentrations of dopamine (200–300 μm)-induced cell death. Doxycycline-inducible overexpression of wild-type GAPDH in SH-SY5Y, but not the Cys-152-substituted mutant (C152A-GAPDH), accelerates cell death accompanying both endogenous and exogenous GAPDH aggregate formation in response to high concentrations of dopamine. Deprenyl, a blocker of GAPDH nuclear translocation, fails to inhibit the aggregation both in vitro and in cells but reduced cell death in SH-SY5Y treated with only a low concentration of dopamine (100 μm). These results suggest that GAPDH participates in oxidative stress-induced cell death via an alternative mechanism in which aggregation but not nuclear translocation of GAPDH plays a role. Moreover, we observe endogenous GAPDH aggregate formation in nigra-striatum dopaminergic neurons after methamphetamine treatment in mice. In transgenic mice overexpressing wild-type GAPDH, increased dopaminergic neuron loss and GAPDH aggregate formation are observed. These data suggest a critical role of GAPDH aggregates in oxidative stress-induced brain damage.  相似文献   

2.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) is a glycolytic enzyme catalyzing the formation of 1,3-diphosphoglycerate from glyceraldehyde-3-phosphate and inorganic phosphate. In cooperation with E3 ubiquitin-kinase Siah1, GAPDH directly participates in the apoptotic death of neurons in Parkinson’s disease. Potential GAPDH inhibitors were screened in silico, and three compounds with high affinity to the NAD-binding site and theoretically capable of forming a disulfide bond with amino acid residue Cys149 were found among cysteine and glutathione derivatives. The inhibitory effect of these compounds was tested on GAPDH from rabbit muscles using isothermal calorimetry and kinetic methods. As a result of experimental screening, we selected two compounds that inhibit GAPDH by forming disulfide bonds with the Cys149 residue in the enzyme active site. Since Cys149 is the key residue not only for the catalyzed reaction, but also for interaction with Siah1, the compounds can be assumed to inhibit the formation of the proapoptotic complex GAPDH-Siah1 and therefore have potential effect against Parkinson’s disease.  相似文献   

3.
Rat 3-mercaptopyruvate sulfurtransferase (MST) contains three exposed cysteines as follows: a catalytic site cysteine, Cys(247), in the active site and Cys(154) and Cys(263) on the surface of MST. The corresponding cysteine to Cys(263) is conserved in mammalian MSTs, and Cys(154) is a unique cysteine. MST has monomer-dimer equilibrium with the assistance of oxidants and reductants. The monomer to dimer ratio is maintained at approximately 92:8 in 0.2 m potassium phosphate buffer containing no reductants under air-saturated conditions; the dimer might be symmetrical via an intersubunit disulfide bond between Cys(154) and Cys(154) and between Cys(263) and Cys(263), or asymmetrical via an intersubunit disulfide bond between Cys(154) and Cys(263). Escherichia coli reduced thioredoxin (Trx) cleaved the intersubunit disulfide bond to activate MST to 2.3- and 4.9-fold the levels of activation of dithiothreitol (DTT)-treated and DTT-untreated MST, respectively. Rat Trx also activated MST. On the other hand, reduced glutathione did not affect MST activity. E. coli C35S Trx, in which Cys(35) was replaced with Ser, formed some adducts with MST and activated MST after treatment with DTT. Thus, Cys(32) of E. coli Trx reacted with the redox-active cysteines, Cys(154) and Cys(263), by forming an intersubunit disulfide bond and a sulfenyl Cys(247). A consecutively formed disulfide bond between Trx and MST must be cleaved for the activation. E. coli C32S Trx, however, did not activate MST. Reduced Trx turns on a redox switch for the enzymatic activation of MST, which contributes to the maintenance of cellular redox homeostasis.  相似文献   

4.
S K Nayak  D Rathore  J K Batra 《Biochemistry》1999,38(31):10052-10058
Restrictocin, produced by the fungus Aspergillus restrictus, belongs to the group of ribonucleolytic toxins called ribotoxins. It specifically cleaves a single phosphodiester bond in a conserved stem and loop structure in the 28S rRNA of large ribosomal subunit and potently inhibits eukaryotic protein synthesis. Restrictocin contains 149 amino acid residues and includes four cysteines at positions 5, 75, 131, and 147. These cysteine residues are involved in the formation of two disulfide bonds, one between Cys 5 and Cys 147 and another between Cys 75 and Cys 131. In the current study, all four cysteine residues were changed to alanine individually and in different combinations by site-directed mutagenesis so as to remove one or both the disulfides. The mutants were expressed and purified from Escherichia coli. Removal of any cysteine or any one of the disulfide bonds individually did not affect the ability of the toxin to specifically cleave the 28S rRNA or to inhibit protein synthesis in vitro. However, the toxin without both disulfide bonds completely lost both ribonucleolytic and protein synthesis inhibition activities. The active mutants, containing only one disulfide bond, exhibited relatively high susceptibility to trypsin digestion. Thus, none of the four cysteine residues is directly involved in restrictocin catalysis; however, the presence of any one of the two disulfide bonds is absolutely essential and sufficient to maintain the enzymatically active conformation of restrictocin. For maintenance of the unique stability displayed by the native toxin, both disulfide bonds are required.  相似文献   

5.
The Cdc25 family of dual specific phosphatases are critical components of cell cycle progression and checkpoint control. Certain stresses such as ultraviolet light stimulate the rapid and selective destruction of Cdc25A protein through a Chk1 protein kinase-dependent pathway. We demonstrate that in contrast to cellular stresses previously examined, hydrogen peroxide exposure affects Cdc25C but not Cdc25A levels. Pharmacological inhibition of Chk1 activity or a mutant of Cdc25C that lacks the Chk1 phosphorylation site still undergoes degradation in response to oxidants. We also demonstrate that in vitro hydrogen peroxide stimulates an intramolecular disulfide bond between the active site cysteine at position 377 and another invariant cysteine at position 330. The in vivo stability of Cdc25C is substantially reduced by the mutation of either of these two cysteine residues. In contrast, a double (C2) mutant of both cysteine 330 and cysteine 377 results in a protein that is more stable than wild type Cdc25C and is resistant to oxidative stress-induced degradation. In addition, the C2 mutant, which is unable to form an intramolecular disulfide bond, has reduced binding to 14-3-3 in vitro and in vivo. These results suggest that oxidative stress may induce cell cycle arrest in part through the degradation of Cdc25C.  相似文献   

6.
BackgroundWe previously showed that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is S-glutathionylated in the presence of H2O2 and GSH. S-glutathionylation was shown to result in the formation of a disulfide bridge in the active site of the protein. In the present work, the possible biological significance of the disulfide bridge was investigated.MethodsHuman recombinant GAPDH with the mutation C156S (hGAPDH_C156S) was obtained to prevent the formation of the disulfide bridge. Properties of S-glutathionylated hGAPDH_C156S were studied in comparison with those of the wild-type protein hGAPDH.ResultsS-glutathionylation of hGAPDH and hGAPDH_C156S results in the reversible inactivation of the proteins. In both cases, the modification results in corresponding mixed disulfides between the catalytic Cys152 and GSH. In the case of hGAPDH, the mixed disulfide breaks down yielding Cys152-Cys156 disulfide bridge in the active site. In hGAPDH_C156S, the mixed disulfide is stable. Differential scanning calorimetry method showed that S-glutathionylation leads to destabilization of hGAPDH molecule, but does not affect significantly hGAPDH_C156S. Reactivation of S-glutathionylated hGAPDH in the presence of GSH and glutaredoxin 1 is approximately two-fold more efficient compared to that of hGAPDH_C156S.ConclusionsS-glutathionylation induces the formation of Cys152-Cys156 disulfide bond in the active site of hGAPDH, which results in structural changes of the protein molecule. Cys156 is important for reactivation of S-glutathionylated GAPDH by glutaredoxin 1.General significanceThe described mechanism may be important for interaction between GAPDH and other proteins and ligands, involved in cell signaling.  相似文献   

7.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

8.
In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post-translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A(4)-glyceraldehyde-3-phosphate dehydrogenase (A(4)-GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H(2)O(2). The formation of a mixed disulfide between glutathione and A(4)-GAPDH resulted in the inhibition of enzyme activity. A(4)-GAPDH was also inhibited by oxidants such as H(2)O(2). However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the A(n)B(n)-GAPDH isozyme in either A(2)B(2) or A(8)B(8) conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3-bisphosphoglycerate. In the presence of 1,3-bisphosphoglycerate, A(4)-GAPDH was fully protected from either oxidation or glutathionylation. Site-directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active-site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A(4)-GAPDH from irreversible oxidation under stress.  相似文献   

9.
Renaturation of two enzymes lacking disulfide bonds, citrate synthase (CS), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and another protein containing disulfide bonds, lysozyme (LZM), were studied in order to dissect the possible chaperone function from the isomerase function of yeast protein disulfide isomerase (PDI). Our findings suggest no independent chaperone activity of yeast PDI with respect to the two enzymes lacking disulfide bonds, GAPDH and CS, since neither of these enzymes required PDI for renaturation. In contrast, a high level of renaturation of LZM was observed in the presence of PDI. Renaturation of LZM involved formation and rearrangement of disulfide bonds. Additional studies using LZM as a substrate were done to examine the role of cysteine residues in the two active sites of PDI. Studies with a series of cysteine to serine mutants and truncation mutants of yeast PDI revealed that the two active sites of PDI were not equal in activity. An intramolecular disulfide bond in at least one active site of PDI was required for the oxidation of reduced LZM. The first cysteine in each active site was necessary for disulfide bond rearrangement, i.e., isomerization, in LZM, while the second cysteine was not.  相似文献   

10.
Profile of the disulfide bonds in acetylcholinesterase   总被引:20,自引:0,他引:20  
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited proteolysis of these molecules yields a tetramer of catalytic subunits that sediments at 11 S. Each catalytic subunit contains 8 cysteine residues which were identified following tryptic digestion of the reduced, 14C-carboxymethylated protein. The tryptic peptides were purified by gel filtration followed by reverse-phase high performance liquid chromatography (HPLC) and then sequenced. The disulfide bonding profile was determined by treating the native, nonreduced 11 S form of acetylcholinesterase with a fluorescent, sulfhydryl-specific reagent, monobromobimane, prior to tryptic digestion. Peptides again were resolved by gel filtration and reverse-phase HPLC. One fluorescent cysteine-containing peptide was identified, indicating that a single sulfhydryl residue, Cys231, was present in its reduced form. Three pairs of disulfide-bonded peptides were identified. These were localized in the polypeptide chain based on the cDNA-deduced sequence of the protein and were identified as Cys67-Cys94, Cys254-Cys265, and Cys402-Cys521. Hence, three loops are found in the secondary structure. Cys572, located in the carboxyl-terminal tryptic peptide, was disulfide-bonded to an identical peptide and most likely forms an intersubunit cross-link. Since the 6 cysteine residues in acetylcholinesterase that are involved in intrachain disulfide bonds are conserved in the sequence of the homologous protein thyroglobulin, it is likely that both proteins share a common folding pattern in their respective tertiary structures. Cys231 and the carboxyl-terminal cysteine residue Cys572 are not conserved in thyroglobulin.  相似文献   

11.
Aqualysin I is a heat-stable alkaline serine protease produced by Thermus aquaticus YT-1. Aqualysin I comprises 281 amino acid residues and contains four cysteine residues. The cysteine residues seemed to form disulfide bonds in the molecule. Thus, the positions of the disulfide bonds were investigated. Disulfide bond-containing peptides were identified by peptide mapping with HPLC before and after carboxymethylation of chymotryptic peptides of aqualysin I. The disulfide bond-containing peptides were isolated and then carboxymethylated. Carboxymethylcysteine-containing peptides were purified, and their amino acid compositions and sequences were determined. Based on the data obtained and the primary structure of aqualysin I, it was concluded that two disulfide bonds were formed between Cys67 and Cys99, and between Cys163 and Cys194.  相似文献   

12.
Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymatic activity strictly dependent on Cys(149). Catalytic Cys(149) is the only solvent-exposed cysteine of the protein and its thiol is relatively acidic (pK(a)=5.7). This property makes GapC1 sensitive to oxidation by H(2)O(2), which appears to inhibit enzyme activity by converting the thiolate of Cys(149) (-S-) into irreversible oxidized forms (-SO(2)(-) and -SO(3)(-)) via a labile sulfenate intermediate (-SO(-)). GSH (reduced glutathione) prevents this irreversible process by reacting with Cys(149) sulfenates to give rise to a mixed disulfide (Cys(149)-SSG), as demonstrated by both MS and biotinylated GSH. Glutathionylated GapC1 can be fully reactivated either by cytosolic glutaredoxin, via a GSH-dependent monothiol mechanism, or, less efficiently, by cytosolic thioredoxins physiologically reduced by NADPH:thioredoxin reductase. The potential relevance of these findings is discussed in the light of the multiple functions of GAPDH in eukaryotic cells (e.g. glycolysis, control of gene expression and apoptosis) that appear to be influenced by the redox state of the catalytic Cys(149).  相似文献   

13.
Core 2 beta1,6-N-acetylglucosaminyltransferase I (C2GnT-I) plays a pivotal role in the biosynthesis of mucin-type O-glycans that serve as ligands in cell adhesion. To elucidate the three-dimensional structure of the enzyme for use in computer-aided design of therapeutically relevant enzyme inhibitors, we investigated the participation of cysteine residues in disulfide linkages in a purified murine recombinant enzyme. The pattern of free and disulfide-bonded Cys residues was determined by liquid chromatography/electrospray ionization tandem mass spectrometry in the absence and presence of dithiothreitol. Of nine highly conserved Cys residues, under both conditions, one (Cys217) is a free thiol, and eight are engaged in disulfide bonds, with pairs formed between Cys59-Cys413, Cys100-Cys172, Cys151-Cys199, and Cys372-Cys381. The only non-conserved residue within the beta1,6-N-acetylglucosaminyltransferase family, Cys235, is also a free thiol in the presence of dithiothreitol; however, in the absence of reductant, Cys235 forms an intermolecular disulfide linkage. Biochemical studies performed with thiolreactive agents demonstrated that at least one free cysteine affects enzyme activity and is proximal to the UDP-GlcNAc binding site. A Cys217 --> Ser mutant enzyme was insensitive to thiol reactants and displayed kinetic properties virtually identical to those of the wild-type enzyme, thereby showing that Cys217, although not required for activity per se, represents the only thiol that causes enzyme inactivation when modified. Based on the pattern of free and disulfide-linked Cys residues, and a method of fold recognition/threading and homology modeling, we have computed a three-dimensional model for this enzyme that was refined using the T4 bacteriophage beta-glucosyltransferase fold.  相似文献   

14.
The Fc receptor (Fc gamma R) of the murine macrophage cell line, J774, was purified by immunoaffinity chromatography then subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and amino-terminal sequencing. FcR material judged to be pure by these criteria was digested with a number of enzymes to identify the cysteine residues engaged in disulfide bonds within the native structure. The results clearly establish that the mouse macrophage Fc gamma R contains two intrachain disulfide bonds, each of which connects adjacent cysteine residues within the two putative extracellular domains of the molecule. In addition, each disulfide-bonded domain was shown to contain two authentic sites of N-linked glycosylation. Extensive peptide sequencing resulted in the unexpected identification of peptide fragments from a fourth Fc gamma R whose sequences were highly homologous to sequences surrounding the two Cys residues in the amino-terminal domain of both alpha and beta 1 Fc gamma R. The fourth Fc gamma R contains a disulfide-bonded amino-terminal domain similar to beta 1 Fc gamma R.  相似文献   

15.
Effective inhibition of protein aggregation is a major goal in biopharmaceutical production processes optimized for product quality. To examine the characteristics of process-stress-dependent aggregation of human granulocyte colony-stimulating factor (G-CSF), we applied controlled stirring and bubble aeration to a recombinant non-glycosylated preparation of the protein produced in Escherichia coli. We characterized the resulting denaturation in a time-resolved manner using probes for G-CSF conformation and size in both solution and the precipitate. G-CSF was precipitated rapidly from solutions that were aerated or stirred; only small amounts of soluble aggregates were found. Exposed hydrophobic surfaces were a characteristic of both soluble and insoluble G-CSF aggregates. Using confocal laser scanning microscopy, the aggregates presented mainly a circular shape. Their size varied according to incubation time and stress applied. The native intramolecular disulfide bonds in the insoluble G-CSF aggregates were largely disrupted as shown by mass spectrometry. New disulfide bonds formed during aggregation. All involved Cys(18) , which is the only free cysteine in G-CSF; one of them had an intermolecular Cys(18(A)) -Cys(18(B)) crosslink. Stabilization strategies can involve external addition of thiols and extensive reduction of surface exposition during processing.  相似文献   

16.
Bovine beta-lactoglobulin (BLG) has been widely used as a model system to study protein folding and aggregation and for biotechnology applications. Native BLG contains two disulfide bonds and one free cysteine at position 121. This free thiol group has been shown to be responsible for the irreversibility of BLG denaturation in vitro, but nothing is known about its relevance during protein folding inside the cell. Here, we report the expression of soluble wild type recombinant BGL in Escherichia coli cells at about 109 mg rBLG/g wet weight cells and a comparison between the aggregation of wt BLG and its variant C121S upon intracellular expression. We show that in E. coli C121SBLG is more prone to aggregation than the wild type protein and that their different behavior depends on the oxidation of disulfide bonds. Our results underline the key contribution of the unpaired cysteine residue during the oxidative folding pathway and indicate BLG as a useful tool for the study of protein aggregation in vivo.  相似文献   

17.
Thioredoxin functions in nearly all organisms as the major thiol-disulfide oxidoreductase within the cytosol. Its prime purpose is to maintain cysteine-containing proteins in the reduced state by converting intramolecular disulfide bonds into dithiols in a disulfide exchange reaction. Thioredoxin has been reported to contribute to a wide variety of physiological functions by interacting with specific sets of substrates in different cell types. To investigate the function of the essential thioredoxin A (TrxA) in the low-GC Gram-positive bacterium Bacillus subtilis, we purified wild-type TrxA and three mutant TrxA proteins that lack either one or both of the two cysteine residues in the CxxC active site. The pure proteins were used for substrate-binding studies known as “mixed disulfide fishing” in which covalent disulfide-bonded reaction intermediates can be visualized. An unprecedented finding is that both active-site cysteine residues can form mixed disulfides with substrate proteins when the other active-site cysteine is absent, but only the N-terminal active-site cysteine forms stable interactions. A second novelty is that both single-cysteine mutant TrxA proteins form stable homodimers due to thiol oxidation of the remaining active-site cysteine residue. To investigate whether these dimers resemble mixed enzyme-substrate disulfides, the structure of the most abundant dimer, C32S, was characterized by X-ray crystallography. This yielded a high-resolution (1.5Å) X-ray crystallographic structure of a thioredoxin homodimer from a low-GC Gram-positive bacterium. The C32S TrxA dimer can be regarded as a mixed disulfide reaction intermediate of thioredoxin, which reveals the diversity of thioredoxin/substrate-binding modes.  相似文献   

18.
Thioredoxin peroxidase (TPx) has been reported to dominate the defense against H(2)O(2), other hydroperoxides, and peroxynitrite at the expense of thioredoxin (Trx) B and C in Mycobacterium tuberculosis (Mt). By homology, the enzyme has been classified as an atypical 2-C-peroxiredoxin (Prx), with Cys(60) as the "peroxidatic" cysteine (C(P)) forming a complex catalytic center with Cys(93) as the "resolving" cysteine (C(R)). Site-directed mutagenesis confirms Cys(60) to be C(P) and Cys(80) to be catalytically irrelevant. Replacing Cys(93) with serine leads to fast inactivation as seen by conventional activity determination, which is associated with oxidation of Cys(60) to a sulfinic acid derivative. However, in comparative stopped-flow analysis, WT-MtTPx and MtTPx C93S reduce peroxynitrite and react with TrxB and -C similarly fast. Reduction of pre-oxidized WT-MtTPx and MtTPx C93S by MtTrxB is demonstrated by monitoring the redox-dependent tryptophan fluorescence of MtTrxB. Furthermore, MtTPx C93S remains stable for 10 min at a morpholinosydnonimine hydrochloride-generated low flux of peroxynitrite and excess MtTrxB in a dihydrorhodamine oxidation model. Liquid chromatography-tandem mass spectrometry analysis revealed disulfide bridges between Cys(60) and Cys(93) and between Cys(60) and Cys(80) in oxidized WT-MtTPx. Reaction of pre-oxidized WT-MtTPx and MtTPx C93S with MtTrxB C34S or MtTrxC C40S yielded dead-end intermediates in which the Trx mutants are preferentially linked via disulfide bonds to Cys(60) and never to Cys(93) of the TPx. It is concluded that neither Cys(80) nor Cys(93) is required for the catalytic cycle of the peroxidase. Instead, MtTPx can react as a 1-C-Prx with Cys(60) being the site of attack for both the oxidizing and the reducing substrate. The role of Cys(93) is likely to conserve the oxidation equivalents of the sulfenic acid state of C(P) as a disulfide bond to prevent overoxidation of Cys(60) under a restricted supply of reducing substrate.  相似文献   

19.
Jönsson TJ  Ellis HR  Poole LB 《Biochemistry》2007,46(19):5709-5721
AhpC and AhpF from Salmonella typhimurium undergo a series of electron transfers to catalyze the pyridine nucleotide-dependent reduction of hydroperoxide substrates. AhpC, the peroxide-reducing (peroxiredoxin) component of this alkyl hydroperoxidase system, is an important scavenger of endogenous hydrogen peroxide in bacteria and acts through a reactive, peroxidatic cysteine, Cys46, and a second cysteine, Cys165, that forms an active site disulfide bond. AhpF, a separate disulfide reductase protein, regenerates AhpC every catalytic cycle via electrons from NADH which are transferred to AhpC through a tightly bound flavin and two disulfide centers, Cys345-Cys348 and Cys129-Cys132, through putative large domain movements. In order to assess cysteine reactivity and interdomain interactions in both proteins, a comprehensive set of single and double cysteine mutants (replacing cysteine with serine) of both proteins were prepared. Based on 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) and AhpC reactivity with multiple mutants of AhpF, the thiolate of Cys129 in the N-terminal domain of AhpF initiates attack on Cys165 of the intersubunit disulfide bond within AhpC for electron transfer between proteins. Cys348 of AhpF has also been identified as the nucleophile attacking the Cys129 sulfur of the N-terminal disulfide bond to initiate electron transfer between these two redox centers. These findings support the modular architecture of AhpF and its need for domain rotations for function, and emphasize the importance of Cys165 in the reductive reactivation of AhpC. In addition, two new constructs have been generated, an AhpF-AhpC complex and a "twisted" form of AhpF, in which redox centers are locked together by stable disulfide bonds which mimic catalytic intermediates.  相似文献   

20.
Disulfide cross-linking, one of the results of oxidative stress, has been thought to play an important role in cataractogenesis. High molecular mass (HMM) protein aggregation also contributes to cataract development, and a prevailing speculation is that disulfide cross-linking induces HMM aggregation. However, there is no direct evidence to support this speculation. Dimerization is an effect of disulfide cross-linking but cannot explain the size of HMM aggregates observed in the lens. alphaA-crystallin has two cysteine residues (Cys131 and Cys142) and we have prepared three Cys-deficient mutants, two single mutants (C131I and C142I) and one double mutant (C131I/C142I). They were subjected to H202 oxidation in an ascorbate-FeCl(3)-EDTA-H202 system. The effects of oxidation on the mutants, including changes in aggregate size and conformation, were compared with those of the wild-type alphaA-crystallin by FPLC gel filtration, absorption, fluorescence, and circular dichroism measurements. The results indicated that other amino acid residues besides Cys, such as Trp and Tyr, were also oxidized by H202. Disulfide dimerization alone seems to play a less important role in HMM aggregation than does the secondary conformational change resulting from the combined effect of the oxidation of Trp and Tyr as well as Cys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号