首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies have established the presence of overlapping binding sites for the noncompetitive antagonists (NCAs) amobarbital, tetracaine, and 3-trifluoromethyl-3-(m-[(125)I]iodophenyl) diazirine ([(125)I]TID) within the ion channel of the Torpedo nicotinic acetylcholine receptor (AChR) in the resting state. These well-characterized NCAs and competitive radioligand binding and photolabeling experiments were employed to better characterize the interaction of the dissociative anesthetics ketamine and thienylcycloexylpiperidine (TCP) with the resting AChR. Our experiments yielded what appear to be conflicting results: (i) both ketamine and TCP potentiated [(125)I]TID photoincorporation into AChR subunits; and (ii) ketamine and TCP had very little effect on [(14)C]amobarbital binding. Nevertheless, (iii) both ketamine and TCP completely displaced [(3)H]tetracaine binding (K(i)s approximately 20.9 and 2.0 microM, respectively) by a mutually exclusive mechanism. To reconcile these results we propose that, in the resting ion channel, TCP and ketamine bind to a site that is spatially distinct from the TID and barbiturate locus, while tetracaine bridges both binding sites.  相似文献   

2.
Models of closed and open channel pores of a muscle-type nicotinic acetylcholine receptor (nAChR) channel comprising M1 and M2 segments are presented. A model of the closed channel is proposed in which hydrophobic residues of the Equatorial Leucine ring screen the oxygen domain formed by the Serine ring, thereby preventing ion flux without completely occluding the pore. This model demonstrates a high similarity with the structure derived from a recent electron microscopy study. We propose that hydrophobic residues of the Equatorial Leucine ring are retracted when the pore is open. Our models provide a possible resolution of the nAChR gate controversy. We have also obtained explanations for the complex mechanisms underlying inhibition of nAChR by philanthotoxins (PhTXs). PhTX-343, containing a spermine moiety with a charge of +3, binds deep in the pore near the Serine ring where classical open channel blockers of nAChR bind. In contrast, PhTX-(12), which has a single charged amino group is unable to reach deeply located rings because of steric restrictions. Both philanthotoxins may bind to a hydrophobic site located close to the external entrance of the pore in a region that includes residues associated with the regulation of desensitization.  相似文献   

3.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane alpha-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 A at its narrowest, to 8.6 A at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

4.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane α-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 Å at its narrowest, to 8.6 Å at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

5.
6.
We have examined the interaction of the nicotinic acetylcholine receptor with decidium diiodide, a bisquaternary analogue of ethidium containing 10 methylene groups between the endocyclic and trimethylamino quaternary nitrogens. Decidium inhibits mono-[125I]iodo-alpha-toxin binding, inhibits agonist-elicited 22Na+ influx in intact cells, augments agonist competition with mono-[125I]iodo-alpha-toxin binding, and enhances [3H]phencyclidine (PCP) binding to a noncompetitive inhibitor site. These effects occur over similar concentration ranges (half-maximum effects between 0.1 and 0.4 microM). Thus, decidium binds to the agonist site and converts the receptor to a desensitized state exhibiting increased affinity for agonist and heterotropic inhibitors. These properties are similar to metaphilic antagonists characterized in classical pharmacology. At higher concentrations decidium associates directly with the noncompetitive inhibitor site identified by [3H]phencyclidine binding. Dissociation constants of decidium at this site in the resting and desensitized states are determined to be 29 and 1.2 microM, respectively. Analysis of fluorescence excitation and emission maxima reveal that binding to both the agonist and noncompetitive inhibitor sites is associated with approximately 2-fold enhancement of fluorescence. The excitation maximum for decidium bound at the agonist site appears at 490 nm while that for decidium bound at the noncompetitive inhibitor site appears at 530 compared to 480 nm in buffer. These results suggest that decidium experiences a more hydrophobic environment upon binding to the nicotinic acetylcholine receptor sites, particularly to the noncompetitive inhibitor site. Fluorescence energy transfer between N'-fluorescein isothiocyanate-lysine-23 alpha-toxin (FITC-toxin), and decidium is not detected when each is bound to one of the two agonist sites on the receptor. This allows a minimal distance to be estimated between fluorophores. In contrast, energy transfer is observed between decidium nonspecifically associated with the membrane or with nonspecific sites and the FITC-toxin at the agonist sites.  相似文献   

7.
Previous work suggests that noncompetitive inhibitor (NCI) ligands and channel permeant cations bind to sites within the nicotinic acetylcholine receptor ion channel. We have used ethidium as a fluorescent probe of the NCI site to investigate interactions between NCI ligands and channel permeant cations. We found that ethidium can be completely displaced from the receptor by a variety of inorganic monovalent and divalent cations. The rank order of monovalent cation affinities was found to be Tl+ greater than Rb+ greater than or equal to K+ greater than Cs+ greater than Na+ greater than Li+. The monovalent cation Kd values vary markedly over a 40-fold range, from 3 to 121 mM. The Kd values and rank order correspond to values determined previously from electrophysiological data. Hill plots of the back titrations yield slopes of 1.0 for all monovalent cations, indicating a single class of independent sites, as shown previously for NCI ligands. Scatchard analysis of ethidium binding in the presence of Tl+ reveals a reduction in affinity and no changes in the maximal number of sites. In the presence of agonist the kinetics of ethidium dissociation induced by the addition of phencyclidine or cations alone or the simultaneous addition of both are nearly identical. The ethidium dissociation rate induced by either phencyclidine or cations is regulated by the occupation of the agonist sites in a similar manner. These results indicate that the effect of cations on NCI ligand binding occurs by mutually exclusive competition. We suggest that NCIs can regulate cation binding at a physiological cation recognition site that is likely part of the cation permeation path through the receptor channel.  相似文献   

8.
A novel inhibitor of nicotinic acetylcholine receptors (nAChRs), psi-conotoxin Piiif, was isolated from the venom of Conus purpurascens and found to have the sequence GOOCCLYGSCROFOGCYNALCCRK-NH2. The sequence is highly homologous to that of psi-conotoxin Piiie, a previously identified noncompetitive inhibitor of Torpedo electroplax nAChR, also isolated from C. purpurascens. Both psi-conotoxins block Torpedo and mouse nicotinic acetylcholine receptors (nAChRs), but psi-Piiif is less potent by a factor of 10(1)-10(2). A high-resolution structure of psi-Piiif was determined by NMR and molecular modeling calculations. Psi-Piiif analogues containing [(13)C]-labeled cysteine at selected positions were synthesized to resolve spectral overlap of Cys side chain proton signals. The structures are well-converged, with backbone atom position RMSDs of 0.21 A for the main body of the peptide between residues 4 and 22 and 0.47 A for all residues. The overall backbone conformation is closely similar to psi-Piiie, the main difference being in the degree of conformational disorder at the two termini. Psi-Piiie and psi-Piiif have similar locations of positive charge density, although psi-Piiif has a lower overall charge. One disulfide bridge of psi-Piiif appears to undergo dynamic conformational fluctuations based on both the model and on experimental observation. Chimeras in which the three intercysteine loops were swapped between psi-Piiie and psi-Piiif were tested for inhibitory activity against Torpedo nAChRs. The third loop, which contains no charged residues in either peptide, is the prime determinant of potency in these psi-conotoxins.  相似文献   

9.
M P Blanton  J B Cohen 《Biochemistry》1992,31(15):3738-3750
To identify regions of the Torpedo nicotinic acetylcholine receptor (AchR) interacting with membrane lipid, we have used 1-azidopyrene (1-AP) as a fluorescent, photoactivatable hydrophobic probe. For AchR-rich membranes equilibrated with 1-AP, irradiation at 365 nm resulted in covalent incorporation in all four AchR subunits with each of the subunits incorporating approximately equal amounts of label. To identify the regions of the AchR subunits that incorporated 1-AP, subunits were digested with Staphylococcus aureus V8 protease and trypsin, and the resulting fragments were separated by SDS-PAGE followed by reverse-phase high-performance liquid chromatography. N-terminal sequence analysis identified the hydrophobic segments M1, M3, and M4 within each subunit as containing the sites of labeling. The labeling pattern of 1-AP in the alpha-subunit was compared with that of another hydrophobic photoactivatable probe, 3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine ([125I]TID). The nonspecific component of [125I]TID labeling [White, B., Howard, S., Cohen, S. G., & Cohen, J.B. (1991) J. Biol. Chem. 266, 21595-21607] was restricted to the same regions as those labeled by 1-AP. The [125I]TID residues labeled in the hydrophobic segment M4 were identified as Cys-412, Met-415, Cys-418, Thr-422, and Val-425. The periodicity and distribution of labeled residues establish that the M4 region is alpha-helical in nature and indicate that M4 presents a broad face to membrane lipid.  相似文献   

10.
1.  Three cyclic diterpenoids isolated from gorgonians of theEunicea genus and characterized as eupalmerin acetate (EUAC), 12,13-bisepieupalmerin (BEEP), and eunicin (EUNI) were found to be pharmacologically active on the nicotinic acetylcholine receptor (AChR).
2.  The receptor from the BC3H-1 muscle cell line was expressed inXenopus laevis oocytes and studied with a two-electrode voltage clamp apparatus.
3.  All three compounds reversibly inhibited ACh-induced currents, with IC50's from 6 to 35µM. ACh dose-response curves suggested that his inhibition was noncompetitive. The cembranoids also increased the rate of receptor desensitization.
4.  Radioligand-binding studies using AChR-rich membranes fromTorpedo electric organ indicated that all three cembranoids inhibited high-affinity [3H]phencyclidine binding, with IC50's of 0.8, 11.6, and 63.8µM for EUNI, EUAC, and BEEP, respectively. The cembranoids at a 100µM concentration did not inhibit [-125I]bungarotoxin binding to either membrane-bound or solubilized AChR.
5.  It is concluded that these compounds act as noncompetitive inhibitors of peripheral AChR.
  相似文献   

11.
The membrane bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker ]3H]chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The radioactivity incorporated into the AChR subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity side for noncompetitive blockers. The alpha-subunit was purified and digested with trypsin and/or CNBr and the resulting fragments fractionated by HPLC. Sequence analysis resulted in the identification of Ser-248 as a major residue labeled by [3H]chlorpromazine in a phencyclidine-sensitive manner. This residue is located in the hydrophobic and putative transmembrane segment M2 of the alpha-subunit, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta-chain [1] and Ser-254 and Leu-257 in the beta-chain [2]. Extended sequence analysis of the hydrophobic segment M1 further showed that no labeling-occurred in this region.  相似文献   

12.
13.
14.
Antibodies were raised to the amino- and car?y-terminal decapeptides of Torpedo californica acetylcholine receptor. Structural studies of the native receptor using the antipeptide antibodies as probes proved the existence of the car?y terminal sequence in the α subunit predicted from its cDNA sequence and supported structural models of the native receptor that place the car?y termini on the intracellular side. The amino termini of the subunits were not accessible on the surface of native receptor.  相似文献   

15.
Transmembrane peptide helices play key roles in signal transduction across cell membranes, yet little is known about their high-resolution structure or the role membrane composition plays in their association, structure, dynamics and ultimately their performance. Using magic angle spinning (MAS) homonuclear dipolar recoupling experiments, the backbone structure at positions L10, L11, and A12 of the M2 ion channel peptide was determined in two lipid systems. Their measurements are in agreement with M2 forming transmembrane helices, but the torsion angles vary considerably from common alpha-helical values. These measurements show remarkable agreement with a previous computational model of M2 peptides forming a pore domain in which their helices are kinked near the central leucine, L11 [R. Sankararamakrishnan, C. Adcock, M.S.P. Sansom, The pore domain of the nicotinic acetylcholine receptor: Molecular modeling, pore dimensions, and electrostatics, Biophys. J. 71 (1996) 1659-1671]. The generation of high resolution data for transmembrane helices is of critical importance in refining structures for membrane protein and developing models of helix packing interactions.  相似文献   

16.
Transmembrane peptide helices play key roles in signal transduction across cell membranes, yet little is known about their high-resolution structure or the role membrane composition plays in their association, structure, dynamics and ultimately their performance. Using magic angle spinning (MAS) homonuclear dipolar recoupling experiments, the backbone structure at positions L10, L11, and A12 of the M2 ion channel peptide was determined in two lipid systems. Their measurements are in agreement with M2 forming transmembrane helices, but the torsion angles vary considerably from common α−helical values. These measurements show remarkable agreement with a previous computational model of M2 peptides forming a pore domain in which their helices are kinked near the central leucine, L11 [R. Sankararamakrishnan, C. Adcock, M.S.P. Sansom, The pore domain of the nicotinic acetylcholine receptor: Molecular modeling, pore dimensions, and electrostatics, Biophys. J. 71 (1996) 1659-1671]. The generation of high resolution data for transmembrane helices is of critical importance in refining structures for membrane protein and developing models of helix packing interactions.  相似文献   

17.
Interactions of benzophenone (BP) with the Torpedo nicotinic acetylcholine receptor (nAChR) were characterized by electrophysiological analyses, radioligand binding assays, and photolabeling of nAChR-rich membranes with [3H]BP to identify the amino acids contributing to its binding sites. BP acted as a low potency noncompetitive antagonist, reversibly inhibiting the ACh responses of nAChRs expressed in Xenopus oocytes (IC50 = 600 microM) and the binding of the noncompetitive antagonist [3H]tetracaine to nAChR-rich membranes (IC50 = 150 microM). UV irradiation at 365 nm resulted in covalent incorporation of [3H]BP into the nAChR subunits (delta > alpha approximately beta > gamma), with photoincorporation limited to the nAChR transmembrane domain. Comparison of nAChR photolabeling in the closed state (absence of agonist) and desensitized state (equilibrated with agonist) revealed selective desensitized state labeling in the delta subunit of deltaPhe-232 in deltaM1 and deltaPro-286/deltaIle-288 near the beginning of deltaM3 that are within a pocket at the interface between the transmembrane and extracellular domains. There was labeling in the closed state within the ion channel at position M2-13 (alphaVal-255, betaVal-261, and deltaVal-269) that was reduced by 90% upon desensitization and labeling in the transmembrane M3 helices of the beta and gamma subunits (betaMet-285, betaMet-288, and gammaMet-291) that was reduced by 50-80% in the desensitized state. Labeling at the lipid interface (alphaMet-415 in alphaM4) was unaffected by agonist. These results provide a further definition of the regions in the nAChR transmembrane domain that differ in structure between the closed and desensitized states.  相似文献   

18.
The gamma-aminobutyric acid type A receptor beta(3) homopentamer is spontaneously open and highly sensitive to many noncompetitive antagonists(NCAs) and Zn(2+). Our earlier study of the M2 cytoplasmic half (-1' to 10') established a model in which NCAs bind at pore-lining residues Ala(2)', Thr(6)', and Leu(9)'. To further define transmembrane 2 (M2) structure relative to NCA action, we extended the Cys scanning to the extra cellular half of the beta(3) homopentamer (11' to 20'). Spontaneous disulfides formed with T13'C, L18'C, and E20'C from M2/M2 cross-linking and with I14'C (weak), H17'C, and R19'Con bridging M2/M3 intersubunits, based on single (M2 Cys only) and dual (M2 Cys plus M3 C289S) mutations. Induced disulfides also formed with T16'C, but there were few or none with M11'C, T12'C, and N15'C. These findings show conformational flexibility/mobility in the M2 extracellular half 17' to 20' region interpreted as a deformed beta-like conformation in the open channel. The NCA radioligands used were [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane ([(3)H]EBOB) and [(3)H]3,3-bis-trifluoromethylbicyclo[2.2.1]heptane-2,2-dicarbonitrile with essentially the same results. NCA binding was disrupted by individual Cys substitutions at 13',14',16',17', and 19'. The inactivity of T13'C/T13'S may have been due to disturbance of the channel gate; I14'S and T16'S showed much better binding activity than their Cys counterparts, and the low activities of H17'C and R19'C were reversed by dithiothreitol. Zn(2+) potency for inhibition of [(3)H]EBOB binding was lowered 346-fold by the mutation H17'A. We propose that NCAs enter their binding site both directly, through the channel pore, and indirectly, through the water cavity of adjacent subunits.  相似文献   

19.
K Imoto  T Konno  J Nakai  F Wang  M Mishina  S Numa 《FEBS letters》1991,289(2):193-200
The channel pore of the nicotinic acetylcholine receptor (AChR) has been investigated by analysing single-channel conductances of systematically mutated Torpedo receptors expressed in Xenopus oocytes. The mutations mainly alter the size and polarity of uncharged polar amino acid residues of the acetylcholine receptor subunits positioned between the cytoplasmic ring and the extracellular ring. From the results obtained, we conclude that a ring of uncharged polar residues comprising threonine 244 of the alpha-subunit (alpha T244), beta S250, gamma T253 and delta S258 (referred to as the central ring) and the anionic intermediate ring, which are adjacent to each other in the assumed alpha-helical configuration of the M2-containing transmembrane segment, together form a narrow channel constriction of short length, located close to the cytoplasmic side of the membrane. Our results also suggest that individual subunits, particularly the gamma-subunit, are asymmetrically positioned at the channel constriction.  相似文献   

20.
We have developed a Fourier transform infrared (FTIR) difference method for probing conformational changes that occur upon the binding of ligands to the nicotinic acetylcholine receptor (nAChR). Our approach is to deposit reconstituted nAChR membranes in a thin film on the surface of a germanium internal reflection element, acquire FTIR spectra in the presence of bulk aqueous solution using attenuated total reflection, and then trigger conformational changes by sequentially flowing a buffer either with or without an agonist past the film surface. Using the fluorescent probe, ethidium bromide, it is demonstrated that the method of nAChR film deposition does not affect the ability of the receptor to undergo the resting-to-desensitized state transition. The difference of FTIR spectra of nAChR films recorded in the presence and absence of agonists reveal highly reproducible infrared bands that are not observed in the difference of spectra recorded with only buffer flowing past the film surface. Some of the bands are assigned to changes in protein secondary structure and to changes in the structure of individual amino acid residues. Bands arising from the vibrations of the agonist bound to the receptor are also observed. The results demonstrate that FTIR difference spectroscopy can detect structural changes in the nAChR that occur upon the binding of ligands. The technique will be an effective method for investigating nAChR structure and function as well as receptor-drug interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号