首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The time of flowering is regulated by various environmental cues, and in some plant species, it is known to be affected by abiotic stresses. We investigated the effect of nutrient stress caused by an abrupt reduction of mineral nutrition on flowering of Arabidopsis thaliana. We used a hydroponic culture system that enabled us to precisely control nutrient levels. When plants were grown in full-strength nutrient solution for several weeks and then transferred to a diluted medium, the time from sowing to bud appearance was significantly shortened. This acceleration of flowering was more pronounced in short days than in long days, and stronger in the ecotype Landsberg erecta than in Columbia and San Feliu-2. The response was also affected by the age of plants at the beginning of nutrient stress and by the concentration of the diluted medium: earlier treatment and more diluted solutions strengthened the effect. Flowering was affected by nutrient stress, not by a change in the osmotic potential of the medium: addition of mannitol to a 1000-fold diluted solution had no effect on the promotion of flowering. When 3-week-old Landsberg erecta plants were exposed to 1000-fold diluted nutrient solution in an 8-h day length, flower bud appearance was strongly and reproducibly advanced by 10.8–12.8 d compared with control plants (which developed buds 41.1–46.2 d after sowing). This treatment can serve as an optimized protocol for future studies concerning physiological, molecular and ecological aspects of flower induction by nutrient stress in A. thaliana.  相似文献   

2.
Summary  Two new species of Euploca (Heliotropiaceae): E. krapovickasii J. I. M. Melo & Semir and E. pottii J. I. M. Melo & Semir are described for Brazil, and 12 new combinations are proposed in neotropical Euploca. Discussions of taxonomic relationships based on morphology, with illustrations and information on geographical distribution, flowering and fruiting phenology are presented.  相似文献   

3.
In order to study the influence of nutrients on the growth characteristics of the dominant dinoflagellates, Ceratium furca and Ceratium fusus, in the temperate coastal area of Sagami Bay, Japan, we conducted field monitoring from January 2000 to December 2005 and performed laboratory culture experiments. In the field study, population densities of C. furca and C. fusus were high, even in low nutrient concentrations (N: 1.58 μM, P: 0.17 μM). Both species were more abundant in the surface and sub-surface layers than in the bottom layers during the stratification periods. In the laboratory study, the specific growth rates of C. furca and C. fusus increased gradually along with increasing nutrients up to the T5 (N: 5 μM, P: 0.5 μM) and T10 (N: 10 μM, P: 1 μM) concentration levels, after which the growth rate plateaued at the T50 (N: 50 μM, P: 5 μM) concentration level. In contrast, the nutrient uptake rates of both species continuously increased, indicating “luxury consumption”, i.e., excessive cellular storage not related to growth rate. The half-saturation constants (Ks) of C. furca for nitrate (0.49 μM) and phosphate (0.05 μM) were slightly higher than C. fusus (0.32 and 0.03 μM, respectively). We offer two reasons why the two Ceratium population densities were maintained at high levels in low nutrient conditions. First, these two species have a competitive advantage over other algal species because of low Ks values and specific characteristics for nutrient uptake such as luxury consumption. Their ability to obtain nutrients through alternative methods, such as phagotrophy, might contribute to bloom formation and population persistence. Second, the cell densities of both Ceratium species increased along with nitrate concentrations in the media even when phosphorus was held constant. In particular, the growth of C. furca was directly supported by various nitrogen sources such as nitrate, ammonium, and urea, although the highest growth rates were observed only in the nitrate-enriched cultures. Our field and laboratory results revealed that the growth rates of the two Ceratium species increased readily in high N:P nutrient conditions (i.e., conditions of P limitation) indicating an advantage over other algal species in phosphorus-limited environments such as Sagami Bay.  相似文献   

4.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   

5.
Seed predation may reduce recruitment in populations that are limited by the availability of seeds rather than microsites. Fires increase the availability of both seeds and microsites, but in plants that lack a soil- or canopy-stored seed bank, post-fire recruitment is often delayed compared to the majority of species. Pyrogenic flowering species, such as Telopea speciosissima, release their non-dormant seeds more than 1 year after fire, by which time seed predation and the availability of microsites may differ from that experienced by plants recruiting soon after fire. I assessed the role of post-dispersal seed predation in limiting seedling establishment after fire in T. speciosissima, in southeastern Australia. Using a seed-planting experiment, I manipulated vertebrate access to seeds and the combined cover of litter and vegetation within experimental microsites in the 2 years of natural seed fall after a fire. Losses to vertebrate and invertebrate seed predators were rapid and substantial, with 50% of seeds consumed after 2 months in exposed locations and after 5 months when vertebrates were excluded. After 7 months, only 6% of seeds or seedlings survived, even where vertebrates were excluded. Removing litter and vegetation increased the likelihood of seed predation by vertebrates, but had little influence on losses due to invertebrates. Microsites with high-density vegetation and litter cover were more likely to have seed survival or germination than microsites with low-density cover. Recruitment in pyrogenic flowering species may depend upon the release of seeds into locations where dense cover may allow them to escape from vertebrate predators. Even here, conditions suitable for germination must occur soon after seed release for seeds to escape from invertebrate predators. Seed production will also affect recruitment after any one fire, while the ability of some juvenile and most adult plants to resprout after fire buffers populations against rapid declines when there is little successful recruitment.  相似文献   

6.
7.
Summary  Seven new names at species rank are proposed in Memecylon sect. Afzeliana Jacq.-Fél., a group of forest shrubs and small trees confined to Guineo-Congolian Africa. The group is centred in Cameroon, where 17 of the 20 species occur. A new flower type, the “star-flower” in Memecylon is revealed, and its taxonomic and ecological importance discussed. Three new, locally endemic species from the South West Province of Cameroon are described, mapped and illustrated: M. kupeanum R. D. Stone, Ghogue & Cheek, M. bakossiense R. D. Stone, Ghogue & Cheek, and M. rheophyticum R. D. Stone, Ghogue & Cheek. Two new names, M. accedens R. D. Stone, Ghogue & Cheek and M. hyleastrum R. D. Stone & Ghogue and one new combination, M. mamfeanum (Jacq.-Fél.) R. D. Stone, Ghogue & Cheek are provided at species level for three taxa originally proposed as varieties of M. afzelii G. Don. The taxon M. arcuatomarginatum var. simulans Jacq.-Fél. is also elevated to species status, as M. simulans (Jacq.-Fél.) R. D. Stone & Ghogue. Conservation assessments are provided for all the newly named taxa. A key is provided to the species of Memecylon sect. Afzeliana.  相似文献   

8.
Genetic engineering of a wide variety of plant species has led to the improvement of plant traits. In this study, the genetic transformation of two potentially important flowering ornamentals, Melastoma malabathricum and Tibouchina semidecandra, with sense and antisense dihydroflavonol-4-reductase (DFR) genes using the Agrobacterium-mediated method was carried out. Plasmids pBETD10 and pBETD11, each harbouring the DFR gene at different orientations (sense and antisense) and selectable marker nptII for kanamycin resistance, were used to transform M. malabathricum and T. semidecandra under the optimized transformation protocol. Putative transformants were selected in the presence of kanamycin with their respective optimized concentration. The results indicated that approximately 4.0% of shoots and 6.7% of nodes for M. malabathricum regenerated after transforming with pBETD10, whereas only 3.7% (shoots) and 5.3% (nodes) regenerated with pBETD11 transformation. For the selection of T. semidecandra, 5.3% of shoots and 9.3% of nodes regenerated with pBETD10 transformation, while only 4.7% (shoots) and 8.3% (nodes) regenerated after being transformed with pBETD11. The presence and integration of the sense and antisense DFR genes into the genome of M. malabathricum and T. semidecandra were verified by polymerase chain reaction (PCR) and nucleotide sequence alignment and confirmed by southern analysis. The regenerated putative transformants were acclimatized to glasshouse conditions. Approximately 31.0% pBETD10-transformed and 23.1% pBETD11-transformed M. malabathricum survived in the glasshouse, whereas 69.4% pBETD10-transformed and 57.4% pBETD11-transformed T. semidecandra survived. The colour changes caused by transformation were observed at the budding stage of putative T. semidecandra transformants where greenish buds were produced by both T. semidecandra harbouring the sense and antisense DFR transgenes. Besides that, the production of four-petal flowers also indicated another morphological difference of putative T. semidecandra transformants from the wild type plants which produce five-petal flowers.  相似文献   

9.
A study was conducted to ascertain monthly changes in biomass of the plant and nutrient content in various organs of Nymphoides hydrophylla grown in a tropical pond during September 1999–August 2000 in relation to environmental factors. Biomass of N. hydrophylla ranged from 25 to 247 g dry weight m−2. Among the various organs, leaf blade showed highest nitrogen (3.0–4.6%) and phosphorus content (0.9–2.4%). Comparative data of three Nymphoides species showed that N. peltata, the temperate species, had maximum potential of biomass production while long flowering period, year around growth, higher nitrogen content in various organs and presence of other associated flora were unique features of tropical species (N. hydrophylla and N. indica). Both water temperature and water level together appeared to be the best environmental variables that significantly explained the variability in biomass of N. hydrophylla.  相似文献   

10.
The future capacity of forest ecosystems to sequester atmospheric carbon is likely to be influenced by CO2-mediated shifts in nutrient cycling through changes in litter chemistry, and by interactions with pollutants like O3. We evaluated the independent and interactive effects of elevated CO2 (560 μl l−1) and O3 (55 nl l l−1) on leaf litter decomposition in trembling aspen (Populus tremuloides) and paper birch (Betula papyrifera) at the Aspen free air CO2 enrichment (FACE) site (Wisconsin, USA). Fumigation treatments consisted of replicated ambient, +CO2, +O3, and +CO2 + O3 FACE rings. We followed mass loss and litter chemistry over 23 months, using reciprocally transplanted litterbags to separate substrate quality from environment effects. Aspen decayed more slowly than birch across all treatment conditions, and changes in decomposition dynamics of both species were driven by shifts in substrate quality rather than by fumigation environment. Aspen litter produced under elevated CO2 decayed more slowly than litter produced under ambient CO2, and this effect was exacerbated by elevated O3. Similarly, birch litter produced under elevated CO2 also decayed more slowly than litter produced under ambient CO2. In contrast to results for aspen, however, elevated O3 accelerated birch decay under ambient CO2, but decelerated decay under enriched CO2. Changes in decomposition rates (k-values) were due to CO2- and O3-mediated shifts in litter quality, particularly levels of carbohydrates, nitrogen, and tannins. These results suggest that in early-successional forests of the future, elevated concentrations of CO2 will likely reduce leaf litter decomposition, although the magnitude of effect will vary among species and in response to interactions with tropospheric O3.  相似文献   

11.
Summary  Three closely affiliated species of Heterospathe Scheff. (H. elegans (Becc.) Becc., H. humilis Becc. and H. versteegiana Becc.) from New Guinea are revised. They are reduced to a single species which is divided into two subspecies, and the new combination H. elegans subsp. humilis (Becc.) M. S. Trudgen & W. J. Baker is made. The subspecies can be readily distinguished by their growth habit. Epitypes are designated for the three previously published names, as informative material on the habit is not included in the existing type specimens. A new, potentially related species is described as H. pullenii M. S. Trudgen & W. J. Baker.  相似文献   

12.
We have examined the surface (0–10 cm) soil characteristics of sites after bamboo (Cephalostachyum pergracile) mass flowering and death (DB sites) in comparison with sites with living bamboo (Bambusa tulda) (LB sites) in a seasonal tropical forest in Thailand. One year after bamboo flowering the DB sites were acidic with lower concentrations of exchangeable Ca and Mg and soil nitrogen than the LB sites. Therefore, although leaf and root litter of the dead bamboo was deposited in the DB sites after bamboo flowering, soil nutrient status decreased.  相似文献   

13.
The role of cytokinins in the promotion of flowering in the endangered species Kniphofia leucocephala Baijnath. was investigated using shoots maintained in culture for 3 years. The highest percentage flowering (65%) was obtained on media containing 20 μM benzyladenine (BA). The inclusion of isopentenyladenine and zeatin in the media also resulted in flowering, but these treatments were less effective than BA in inducing flowering. The effect of cytokinins on flowering was dose-dependent, with high concentrations of BA inhibiting flower formation. Treatments that resulted in rooting of explants produced no flowers. The resulting inflorescences in all treatments did not mature and senesced prematurely, even when gibberellic acid (GA3) was applied post-flower-emergence.  相似文献   

14.
We performed comparative analyses of four cross-sections of the distal radius and tibia in two species of macaque to clarify the relationships between bone morphology and locomotor type. The lengths of bones and five bone geometric properties in each section were examined and compared separately in both female and male Macaca mulatta and Macaca fascicularis. In M. mulatta, there were no significant gender-specific differences in either the radius or the tibia. In contrast, the radius and tibia of male M. fascicularis had greater geometric parameters in the 20% and 40% positions relative to the 5% and 10% positions from the distal end than those of their female counterparts. The radius and tibia of M. mulatta were relatively longer than those of M. fascicularis, and the sectional parameters of the tibia of M. mulatta were relatively larger than those of M. fascicularis. Standardization of the log-transformed bone length between the species revealed larger radial cortical bone areas in M. fascicularis. In contrast, there were minimal differences in the tibial cortical bone areas between the two species. This study suggests that the observed distinctions in bone geometry in female and male M. fascicularis may be due to gender-specific differences in the muscle weights of the forearm and calf, which may underlie the divergence in the leaping abilities of females and males of this species. Taken together, these results of interspecies comparisons may be related to the fact that arboreal primates such as M. fascicularis undergo compressive mechanical stress due to the forelimb lead that occurs as the animal descends a sloping trunk or bridges a tree gap downward, while terrestrial primates such as M. mulatta move on nearly flat substrates. Differences in fore- and hind-limb bone properties between the two species are discussed with regard to functional morphology and locomotor type.  相似文献   

15.
Field trials were conducted to evaluate the efficacy of wheat bran bait formulations of Paranosema locustae and Metarhizium anisopliae for controlling grasshoppers in southeast Niger. Treatments consisted of wheat bran baits mixed with M. anisopliae, P. locustae + M. anisopliae or with P. locustae spores and P. locustae + sugar. Oedaleus senegalensis, Pyrgomorpha cognata and Acrotylus blondeli were the predominant species at the time of application representing ca. 94% of the total population. Bran application was done when O. senegalensis (ca. 75% of the population) was at its early developmental stages, with first, second and third instars accounting for 64–85%. Grasshopper population reduction, P. locustae prevalence and level of infections in the predominant species were monitored. Manual application of P. locustae and M. anisopliae formulated in wheat bran has proven to induce consistent pathogen infection in grasshopper populations. Population density over the three weeks monitoring, typically decreased by 44.7 ± 6.9%, 52.8 ± 8.4%, 73.7 ± 5.5% and 89.1 ± 1.8% in P. locustae, P. locustae + sugar, M. anisopliae and P. locustae + M. anisopliae treated plots respectively. Paranosema locustae prevalence in surviving adult grasshoppers at 28 after application was 48.1 ± 2.3%, 28.9 ± 4.8% and 27.4 ± 3.7%, with infection level of 6.2 ± 0.8 × 106, 2.3 ± 0.3 × 104 and 2.1 ± 0.3 × 103 spores mg−1 host weight in O. senegalensis, A blondeli and P. cognate respectively. Other species that each accounted for <2% of the community, namely Aiolopus thalassinus, A. simulatrix, Acorypha glaucopsis, Acrotylus patruelis, Anacridium melanorhodon, Diabolocatantops axillaris, Kraussaria angulifera and Schistocerca gregaria were found to show sign of infection. The results from this study suggest that wheat bran application of M. anisopliae and P. locustae alone or in combination, targeting early instars grasshopper could be a valuable option in grasshopper control programs.  相似文献   

16.
The pupae of Spodoptera litura (Fab.), (Lepidoptera: Noctuidae), a polyphagous pest affecting common crops in Indian subcontinent, were treated with different concentrations of conidia of four isolates of entomopathogenic fungi belonging to three species, Metarhizium anisopliae var. anisopliae (Metschnikov) Sorokin (ARSEF 7487), Lecanicillium muscarium (Petch) Zare & W Gams (two isolates ARSEF 7037 and ARSEF 6118) and Cordyceps cardinalis Sung & Spatafora (ARSEF 7193) under laboratory conditions. Suspensions (108/ml) of conidia harvested from Sabouraud dextrose agar yeast extract (SDAY) plates resulted in the highest mortality (85.8%) with M. anisopliae and the lowest mortality (57.3%) with C. cardinalis. The values of LC50 and LC90 suggested that M. anisopliae was the most virulent fungal strain followed by L. muscarium (ARSEF 7037). However, C. cardinalis was the least virulent species among the fungi used in the bioassay. In soil bioassays, drenching the soil with conidial suspensions of ARSEF 7487 and ARSEF 7037 (10conidia/g of soil) reduced the adult emergence from pupa by 81.3% and 72.5%, respectively, while premixing the sterile soil with conidia killed lesser number of pupae (62.9% by ARSEF 7487 and 54.6% by ARSEF 7037). Our findings suggest that M. anisopliae (ARSEF 7487) and L. muscarium (ARSEF 7037) are potent entomopathogens and could be developed into biocontrol agents against rice cutworm in IPM programs. Handling editor: Helen Roy  相似文献   

17.
18.
The effects of simulated herbivory (early or late defoliation and cutting of the flowering shoot) on the growth and reproduction of three species of monocarpic composite forbs (Crepis pulchra, Picris hieracioides and C. foetida) with different inflorescence architectures were studied in experimental plots. For the three species studied, early defoliation had no significant effect on subsequent growth. In contrast, late defoliation, occurring at the start of the season of drought, had a negative effect on growth and reproduction in the two Crepis species, particularly C. foetida, but had less effect on P. hieracioides. Sexual biomass was more clearly affected by late defoliation than was vegetative biomass, although the effects differed markedly among species possibly as a result of differences in phenology. Clipping the flowering shoot removed about 3 times less biomass than late defoliation and had little effect on vegetative biomass. It had much greater effects on the sexual biomass in P. hieracioides and C. pulchra, and resulted in the production of many shoots sprouting from the rosette, allowing the treated plants to regain a vegetative biomass close to that of control plants. Clipping did however lead to the production of shorter shoots and a reduction in the number of capitula formed. In C. foetida, much branching occurred even when the main shoot was not cut; the architecture of individual plants was therefore only slightly changed by clipping the apical bud and the sexual biomass of this species was not affected by ablation of the flowering shoot. Overcompensation was found in only two families of C. pulchra for vegetative biomass. No over-compensation was found for sexual biomass, despite an increase in the number of flowering shoots in C. pulchra and P. hieracioides following clipping. However situations close to compensation for the vegetative biomass in the three species and in P. hieracioides for the sexual biomass were recorded. The response of the three study species to simulated herbivory were related to their architecture and to the time of defoliation.  相似文献   

19.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

20.
One of the greatest threats to the native ecosystems in any part of the world is the invasion and permanent colonization of ecosystems by non-native species. Florida is no exception to this biological invasion, and is currently colonized by an extensive variety of exotic plant species. Originally imported from Asia over 30 years ago, Old World Climbing Fern Lygodium microphyllum (Cavanilles) R. Brown) has become one of the most invasive and destructive weeds in southern Florida. To date different effective control measures of its growth and spread have not been successful; fire and herbicide applications that are currently employed are neither cost effective nor environmentally friendly. In light of the highly delicate ecosystem that is being affected by L. microphyllum, we tested the soil fungus Myrothecium verrucaria (Albertini and Schwein) Ditmar: Fr. for its pathogenicity on the invasive fern. In greenhouse studies the effect of two conidial concentrations of M. verrucaria on L. microphyllum was investigated. Plants were spray inoculated with M. verrucaria which resulted in successful disease development with leaf necrosis symptoms. The higher conidial concentration (1 × 108 ml−1) produced a disease index of approximately 3 on a scale of 0 to 4, day 24 postinitial inoculation, demonstrating the efficacy of this fungus as a severe retardant of Lygodium growth. Preliminary screening of selected native plant species for susceptibility to M. verrucaria showed low disease indices after repeated spray inoculations; the highest index attained was 0.4 by Slash pine (Pinus elliottii).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号