首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Folding of the primate brain cortex allows for improved neural processing power by increasing cortical surface area for the allocation of neurons. The arrangement of folds (sulci) and ridges (gyri) across the cerebral cortex is thought to reflect the underlying neural network. Gyrification, an adaptive trait with a unique evolutionary history, is affected by genetic factors different from those affecting brain volume. Using a large pedigreed population of ∼1000 Papio baboons, we address critical questions about the genetic architecture of primate brain folding, the interplay between genetics, brain anatomy, development, patterns of cortical–cortical connectivity, and gyrification’s potential for future evolution. Through Mantel testing and cluster analyses, we find that the baboon cortex is quite evolvable, with high integration between the genotype and phenotype. We further find significantly similar partitioning of variation between cortical development, anatomy, and connectivity, supporting the predictions of tension-based models for sulcal development. We identify a significant, moderate degree of genetic control over variation in sulcal length, with gyrus-shape features being more susceptible to environmental effects. Finally, through QTL mapping, we identify novel chromosomal regions affecting variation in brain folding. The most significant QTL contain compelling candidate genes, including gene clusters associated with Williams and Down syndromes. The QTL distribution suggests a complex genetic architecture for gyrification with both polygeny and pleiotropy. Our results provide a solid preliminary characterization of the genetic basis of primate brain folding, a unique and biomedically relevant phenotype with significant implications in primate brain evolution.  相似文献   

2.
A unique opportunity to understand genetic determinants of cognition is offered by Williams syndrome (WS), a well-characterized hemideletion on chromosome 7q11.23 that causes extreme, specific weakness in visuospatial construction (the ability to visualize an object as a set of parts or construct a replica). Using multimodal neuroimaging, we identified a neural mechanism underlying the WS visuoconstructive deficit. Hierarchical assessment of visual processing with fMRI showed isolated hypoactivation in WS in the parietal portion of the dorsal stream. In the immediately adjacent parietooccipital/intraparietal sulcus, structural neuroimaging showed a gray matter volume reduction in participants with WS. Path analysis demonstrated that the functional abnormalities could be attributed to impaired input from this structurally altered region. Our observations confirm a longstanding hypothesis about dorsal stream dysfunction in WS, demonstrate effects of a localized abnormality on visual information processing in humans, and define a systems-level phenotype for mapping genetic determinants of visuoconstructive function.  相似文献   

3.
4.
Wnt signaling regulates hippocampal development but little is known about the functions of specific Wnt receptors in this structure. Frizzled 9 is selectively expressed in the hippocampus and is one of about 20 genes typically deleted in Williams syndrome. Since Williams syndrome is associated with severe visuospatial processing defects, we generated a targeted null allele for frizzled 9 to examine its role in hippocampal development. Frizzled 9-null mice had generally normal gross anatomical hippocampal organization but showed large increases in apoptotic cell death in the developing dentate gyrus. This increase in programmed cell death commenced with the onset of dentate gyrus development and persisted into the first postnatal week of life. There was also a perhaps compensatory increase in the number of dividing precursors in the dentate gyrus, which may have been a compensatory response to the increased cell death. These changes in the mutants resulted in a moderate decrease in the number of adult dentate granule cells in null mice and an increase in the number of hilar mossy cells. Heterozygous mice (the same frizzled 9 genotype as Williams syndrome patients) were intermediate between wild type and null mice for all developmental neuronanatomic defects. All mice with a mutant allele had diminished seizure thresholds, and frizzled 9 null mice had severe deficits on tests of visuospatial learning/memory. We conclude that frizzled 9 is a critical determinant of hippocampal development and is very likely to be a contributing factor to the neurodevelopmental and behavioral phenotype of patients with Williams syndrome.  相似文献   

5.
Williams-Beuren syndrome is a rare contiguous gene syndrome, characterized by intellectual disability, facial dysmorphisms, connective-tissue abnormalities, cardiac defects, structural brain abnormalities, and transient infantile hypercalcemia. Genes lying telomeric to RFC2, including CLIP2, GTF2I and GTF2IRD1, are currently thought to be the most likely major contributors to the typical Williams syndrome cognitive profile, characterized by a better-than-expected auditory rote-memory ability, a relative sparing of language capabilities, and a severe visual-spatial constructive impairment. Atypical deletions in the region have helped to establish genotype-phenotype correlations. So far, however, hardly any deletions affecting only a single gene in the disease region have been described. We present here two healthy siblings with a pure, hemizygous deletion of CLIP2. A putative role in the cognitive and behavioral abnormalities seen in Williams-Beuren patients has been suggested for this gene on the basis of observations in a knock-out mouse model. The presented siblings did not show any of the clinical features associated with the syndrome. Cognitive testing showed an average IQ for both and no indication of the Williams syndrome cognitive profile. This shows that CLIP2 haploinsufficiency by itself does not lead to the physical or cognitive characteristics of the Williams-Beuren syndrome, nor does it lead to the Williams syndrome cognitive profile. Although contribution of CLIP2 to the phenotype cannot be excluded when it is deleted in combination with other genes, our results support the hypothesis that GTF2IRD1 and GTF2I are the main genes causing the cognitive defects associated with Williams-Beuren syndrome.  相似文献   

6.
The incidence of brain tumors is rising in children and the elderly, but little is known about the mechanisms underlying brain tumor initiation and progression. In the 1940s, Zimmerman and coworkers exploited the tumor-promoting potential of polycyclic hydrocarbons to produce brain tumor models in adult mice that simulated the neuropathology of human brain tumors. Based on these early findings and on recent neurobiological studies of stem cells, I propose that crystalline carcinogenic pellets surgically implanted in the central nervous system establish over time a microenvironment that fosters proliferation and genetic damage in neural stem cells and their progenitors. Moreover, activated glia (microglia and astrocytes) and recruited macrophages mediate these processes. Gradually local tissue fields, which normally restrict stem cell proliferation, become disorganized, leading to further stem cell proliferation, genetic damage, and eventual neoplasia. Depending on age, location, and the state of glial/macrophage activation, the resulting brain tumor may resemble transformed neural progenitors aborted in more or less differentiated states. This hypothesis integrates the general mechanisms by which neural stem cells, glia, and macrophages orchestrate the initiation and progression of brain cancer. Also discussed are implications of these concepts for the diagnosis and therapy of human brain tumors.  相似文献   

7.
As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila. Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10(-3) (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11A containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster. Like in the human genome, the D. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination. including unequal crossing over, in the agnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.  相似文献   

8.
Down's syndrome: a genetic disorder in biobehavioral perspective   总被引:2,自引:0,他引:2  
Down's syndrome is a genetic disorder that can lead to mental retardation of varying degrees. How this chromosomal abnormality causes mental retardation remains an open question. This paper reviews what is currently known about the neural and cognitive features of Down's syndrome, noting the growing evidence of disproportionate impairment of specific systems such as the hippocampal formation, the prefrontal cortex and the cerebellum. The development of animal models of these defects offers a way of ultimately connecting the genetic disorder to its cognitive consequences.  相似文献   

9.
The power of genetic analyses to study relationships between human populations is growing rapidly but there are some worries about the use of historically collected human material. Nigel Williams reports on a new study showing the value of such approaches.  相似文献   

10.
Recently, the zebrafish (Danio rerio) has been established as a key animal model in neuroscience. Behavioral, genetic, and immunohistochemical techniques have been used to describe the connectivity of diverse neural circuits. However, few studies have used zebrafish to understand the function of cerebral structures or to study neural circuits. Information about the techniques used to obtain a workable preparation is not readily available. Here, we describe a complete protocol for obtaining in vitro and in vivo zebrafish brain preparations. In addition, we performed extracellular recordings in the whole brain, brain slices, and immobilized nonanesthetized larval zebrafish to evaluate the viability of the tissue. Each type of preparation can be used to detect spontaneous activity, to determine patterns of activity in specific brain areas with unknown functions, or to assess the functional roles of different neuronal groups during brain development in zebrafish. The technique described offers a guide that will provide innovative and broad opportunities to beginner students and researchers who are interested in the functional analysis of neuronal activity, plasticity, and neural development in the zebrafish brain.  相似文献   

11.
Recent evidence suggests that genetic and biochemical factors associated with psychoses may also provide an increased propensity to think creatively. The evolutionary theories linking brain growth and diet to the appearance of creative endeavors have been made recently, but they lack a direct link to research on the biological correlates of divergent and creative thought. Expanding upon Horrobin's theory that changes in brain size and in neural microconnectivity came about as a result of changes in dietary fat and phospholipid incorporation of highly unsaturated fatty acids, we propose a theory relating phospholipase A2 (PLA2) activity to the neuromodulatory effects of the noradrenergic system. This theory offers probable links between attention, divergent thinking, and arousal through a mechanism that emphasizes optimal individual functioning of the PLA2 and NE systems as they interact with structural and biochemical states of the brain. We hope that this theory will stimulate new research in the neural basis of creativity and its connection to psychoses.  相似文献   

12.
Soybean (Glycine max) is a self-pollinating species that has relatively low nucleotide polymorphism rates compared with other crop species. Despite the low rate of nucleotide polymorphisms, a wide range of heritable phenotypic variation exists. There is even evidence for heritable phenotypic variation among individuals within some cultivars. Williams 82, the soybean cultivar used to produce the reference genome sequence, was derived from backcrossing a Phytophthora root rot resistance locus from the donor parent Kingwa into the recurrent parent Williams. To explore the genetic basis of intracultivar variation, we investigated the nucleotide, structural, and gene content variation of different Williams 82 individuals. Williams 82 individuals exhibited variation in the number and size of introgressed Kingwa loci. In these regions of genomic heterogeneity, the reference Williams 82 genome sequence consists of a mosaic of Williams and Kingwa haplotypes. Genomic structural variation between Williams and Kingwa was maintained between the Williams 82 individuals within the regions of heterogeneity. Additionally, the regions of heterogeneity exhibited gene content differences between Williams 82 individuals. These findings show that genetic heterogeneity in Williams 82 primarily originated from the differential segregation of polymorphic chromosomal regions following the backcross and single-seed descent generations of the breeding process. We conclude that soybean haplotypes can possess a high rate of structural and gene content variation, and the impact of intracultivar genetic heterogeneity may be significant. This detailed characterization will be useful for interpreting soybean genomic data sets and highlights important considerations for research communities that are developing or utilizing a reference genome sequence.  相似文献   

13.
Kalra SP 《Peptides》2008,29(1):127-138
This review critically reappraises recent scientific evidence concerning central leptin insufficiency versus leptin resistance formulations to explain metabolic and neural disorders resulting from subnormal or defective leptin signaling in various sites in the brain. Research at various fronts to unravel the complexities of the neurobiology of leptin is surveyed to provide a comprehensive account of the neural and metabolic effects of environmentally imposed fluctuations in leptin availability at brain sites and the outcome of newer technology to restore leptin signaling in a site-specific manner. The cumulative new knowledge favors a unified central leptin insufficiency syndrome over the, in vogue, central resistance hypothesis to explain the global adverse impact of deficient leptin signaling in the brain. Furthermore, the leptin insufficiency syndrome delineates a novel role of leptin in the hypothalamus in restraining rhythmic pancreatic insulin secretion while concomitantly enhancing glucose metabolism and non-shivering thermogenic energy expenditure, sequelae that would otherwise promote fat accrual to store excess energy resulting from consumption of energy-enriched diets. A concerted effort should now focus on development of newer technologies for delivery of leptin or leptin mimetics to specifically target neural pathways for remediation of diverse ailments encompassing the central leptin insufficiency syndrome.  相似文献   

14.
In Williams syndrome (WS), a deletion of approximately 1.5 Mb on one copy of chromosome 7 causes specific physical, cognitive, and behavioral abnormalities. Molecular dissection of the phenotype may be a route to identification of genes important in human cognition and behavior. Among the genes known to be deleted in WS are ELN (which encodes elastin), LIMK1 (which encodes a protein tyrosine kinase expressed in the developing brain), STX1A (which encodes a component of the synaptic apparatus), and FZD3. Study of patients with deletions or mutations confined to ELN showed that hemizygosity for elastin is responsible for the cardiological features of WS. LIMK1 and STX1A are good candidates for cognitive or behavioral aspects of WS. Here we describe genetic and psychometric testing of patients who have small deletions within the WS critical region. Our results suggest that neither LIMK1 hemizygosity (contrary to a previous report) nor STX1A hemizygosity is likely to contribute to any part of the WS phenotype, and they emphasize the importance of such patients for dissecting subtle but highly penetrant phenotypes.  相似文献   

15.
Williams syndrome (WS) is caused by deletion of the elastin (ELN) gene. We have analyzed an intragenic restriction fragment length polymorphism (RFLP) and the gene dosage of ELN using a new probe (FP4) in a series of 60 sporadic patients with a clinical diagnosis of WS. Deletion of the ELN gene was shown in 54 cases, while clinical revaluation of the 6 patients without the deletion did not confirm the diagnosis of WS. These results support the genetic homogeneity of WS, and the high accuracy of ELN molecular analysis, which can be confidenty used for providing genetic counselling to WS families.  相似文献   

16.
The study of language knowledge guided by a purely biological perspective prioritizes the study of syntax. The essential process of syntax is recursion — the ability to generate an infinite array of expressions from a limited set of elements. Researchers working within the biological perspective argue that this ability is possible only because of an innately specified genetic makeup that is specific to human beings. Such a view of language knowledge may be fully justified in discussions on biolinguistics, and in evolutionary biology. However, it is grossly inadequate in understanding language-learning problems, particularly those experienced by children with neurodevelopmental disorders such as developmental dyslexia, Williams syndrome, specific language impairment and autism spectrum disorders. Specifically, syntax-centered definitions of language knowledge completely ignore certain crucial aspects of language learning and use, namely, that language is embedded in a social context; that the role of envrironmental triggering as a learning mechanism is grossly underestimated; that a considerable extent of visuo-spatial information accompanies speech in day-to-day communication; that the developmental process itself lies at the heart of knowledge acquisition; and that there is a tremendous variation in the orthographic systems associated with different languages. All these (socio-cultural) factors can influence the rate and quality of spoken and written language acquisition resulting in much variation in phenotypes associated with disorders known to have a genetic component. Delineation of such phenotypic variability requires inputs from varied disciplines such as neurobiology, neuropsychology, linguistics and communication disorders. In this paper, I discuss published research that questions cognitive modularity and emphasises the role of the environment for understanding linguistic capabilities of children with neuro-developmental disorders. The discussion pertains to two specific disorders, developmental dyslexia and Williams syndrome.  相似文献   

17.
18.
As the Human Genome and Drosophila Genome Projects were completed, it became clear that functions of human disease-associated genes may be elucidated by studying the phenotypic expression of mutations affecting their structural or functional homologs in Drosophila.Genomic diseases were identified as a new class of human disorders. Their cause is recombination, which takes place at gene-flanking duplicons to generate chromosome aberrations such as deletions, duplications, inversions, and translocations. The resulting imbalance of the dosage of developmentally important genes arises at a frequency of 10-3 (higher than the mutation rate of individual genes) and leads to syndromes with multiple manifestations, including cognitive defects. Genomic DNA fragments were cloned from the Drosophila melanogaster agnostic locus, whose mutations impair learning ability and memory. As a result, the locus was exactly localized in X-chromosome region 11AB containing the LIM kinase 1 (LIMK1) gene (CG1848), which is conserved among many species. Hemizygosity for the LIMK1 gene, which is caused by recombination at neighboring extended repeats, underlies cognitive disorders in human Williams syndrome. LIMK1 is a component of the integrin signaling cascade, which regulates the functions of the actin cytoskeleton, synaptogenesis, and morphogenesis in the developing brain. Immunofluorescence analysis revealed LIMK1 in all subdomains of the central complex and the visual system of Drosophila melanogaster.Like in the human genome, theD. melanogaster region is flanked by numerous repeats, which were detected by molecular genetic methods and analysis of ectopic chromosome pairing. The repeats determined a higher rate of spontaneous and induced recombination, including unequal crossing over, in theagnostic gene region. Hence, the agnostic locus was considered as the first D. melanogaster model suitable for studying the genetic defect associated with Williams syndrome in human.  相似文献   

19.
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.  相似文献   

20.
Genomically identical cells have long been assumed to comprise the human brain, with post-genomic mechanisms giving rise to its enormous diversity, complexity, and disease susceptibility. However, the identification of neural cells containing somatically generated mosaic aneuploidy – loss and/or gain of chromosomes from a euploid complement – and other genomic variations including LINE1 retrotransposons and regional patterns of DNA content variation (DCV), demonstrate that the brain is genomically heterogeneous. The precise phenotypes and functions produced by genomic mosaicism are not well understood, although the effects of constitutive aberrations, as observed in Down syndrome, implicate roles for defined mosaic genomes relevant to cellular survival, differentiation potential, stem cell biology, and brain organization. Here we discuss genomic mosaicism as a feature of the normal brain as well as a possible factor in the weak or complex genetic linkages observed for many of the most common forms of neurological and psychiatric diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号