首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve probe methods of plasma diagnostics, special probe measurements were performed and numerical models describing ion transport to a probe with allowance for collisions were developed. The current–voltage characteristics of cylindrical and planar probes were measured in an RF capacitive discharge in argon at a frequency of 81 MHz and plasma densities of 1010–1011 cm–3, typical of modern RF reactors. 1D and 2D numerical models based on the particle-in-cell method with Monte Carlo collisions for simulating ion motion and the Boltzmann equilibrium for electrons are developed to describe current collection by a probe. The models were used to find the plasma density from the ion part of the current–voltage characteristic, study the effect of ion collisions, and verify simplified approaches to determining the plasma density. A 1D hydrodynamic model of the ion current to a cylindrical probe with allowance for ion collisions is proposed. For a planar probe, a method to determine the plasma density from the averaged numerical results is developed. A comparative analysis of different approaches to calculating the plasma density from the ion current to a probe is performed.  相似文献   

2.
This report evaluates the use of a quadrupolar ion trap for quantitation in a bioanalytical laboratory. The evaluation was accomplished with the cross-validation of an LC–MS–MS quantitative method previously validated on a triple quadrupole mass spectrometer. The method was a multi-level determination of the anti-obesity drug, orlistat, in human plasma. The method has been refined previously on a triple quadrupole instrument to provide rapid sample throughput with robust reproducibility at sub-nanogram detection limits. Optimization of the method on the ion trap required improved chromatographic separation of orlistat from interfering plasma matrix components coextracted during the initial liquid–liquid extraction of plasma samples. The ion trap produces full-scan collision-induced dissociation mass spectra containing characteristic orlistat fragment ions that are useful for quantitation. Data collection on the ion trap required a precursor ion isolation width of 3.0 Da and optimal quantitative results were obtained when three fragment ions were monitored with a 1.8 Da window for each ion. Although a direct cross-validation between the ion trap and the tandem triple quadrupole mass spectrometer was not possible, quantitative results for orlistat comparable to those obtained from the triple quadrupole instrument were achieved by the ion trap with the modified method. The limit of quantitation for orlistat in plasma on the ion trap was 0.3 ng ml−1 with a linear dynamic range of 0.3 to 10 ng ml−1. Precision and accuracy varied from 4 to 15% over the quantitation range. The overall results provide an example of the utility of an ion trap in bioanalytical work.  相似文献   

3.
A rapid and sensitive analytical method has been developed for the simultaneous determination of 16 non-steroidal anti-inflammatory drugs (NSAIDs) in human plasma by capillary liquid chromatography (LC) and quadrupole mass spectrometry with electrospray ionization operated in the negative ion mode. The sample clean-up and enrichment on a pre-column were accomplished on-line to improve the sensitivity. This method greatly reduced sample preparation time and sample volume compared with off-line sample extraction methods and conventional LC methods, respectively. The recoveries of NSAIDs from human plasma were 56.7-96.9%. The total analytical time for a single analytical run was approximately 15 min. The detection limits of NSAIDs were 0.001-0.075 microg ml(-1) using a selected ion monitoring mode.  相似文献   

4.
A quantitative method for determination of nitroglycerin in human plasma was developed. Nitroglycerin and the internal standard (butane-1,2,4-triyl trinitrate) were extracted from plasma with pentane. The extracts were analysed by gas chromatography mass spectrometry using fused silica capillary columns and electron capture negative ion chemical ionization. The quantitation limit of the method was about 50 pg ml-1. Linear calibration curves were obtained in the range of 50-1600 pg ml-1. Precision at the level of 100 pg ml-1 was 4%.  相似文献   

5.
A method is described for the quantitative determination of terbutaline in 2 ml human plasma. The drug is extracted from plasma as the terbutaline tetraphenylboron ion pair and determined by gas chromatography mass spectrometry of its t-butyldimethylsily ether. Salbutamol is used as internal standard. Quantification is achieved by selected ion monitoring of the ion m/z 482 derived from t-butyldimethylsilyl terbutaline and m/z 495 from t-butyldimethylsilyl salbutamol. The detection limit was estimated to be 250 pg terbutaline ml-1 plasma. The coefficient of variation at the level of 1 ng terbutaline ml-1 was 4.1% (n = 5).  相似文献   

6.
A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method was established for the determination of 5-aminoimidazole-4-carboxamide (AICA) in human plasma. The method included a solvent extraction of AICA as an ion pair with 1-pentanesulfonate ion and a separation on a Hypersil ODS2 column with the mobile phase of methanol-water (68:32, v/v). Determination was performed using an electrospray ionization source in positive ion mode (ESI(+)). Multiple reaction monitoring (MRM) was utilized for the detection monitoring m/z at 127-->110 for AICA, and 172-->128 for IS. The calibration curve was linear within a range from 20 to 2000 ng/mL and the limit of quantity for AICA in plasma was 20 ng/mL. RSD of intra-assay and inter-assay were no more than 5.90% and 5.65%.  相似文献   

7.
A rapid, sensitive, specific, accurate, and reproducible automated liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for the quantitative determination of 1'-(2-amino-3-methylbenzoyl)-4-[[[(3-chlorophenyl)sulfonyl]phenyl]methyl]-1,4'-bipiperidine hydrochloride (SCH 211803) in plasma has been developed. The method was validated in rat and monkey plasma over the concentration range of 0.5-250 ng/ml using 2H(4)-SCH 211803 as the internal standard (IS). Automated 96-well plate protein precipitation (PP) with acetonitrile (ACN) was used for sample processing. The method employed a Betasil C18 column with a fast gradient for the separation of analyte and internal standard from the plasma matrix and a triple quadrupole mass spectrometer operated in positive ion multiple reaction monitoring (MRM) mode for detection. The method was used for the determination of SCH 211803 plasma concentrations to support pre-clinical studies.  相似文献   

8.
A sensitive and selective liquid chromatographic method coupled with mass spectrometry (LC-MS) was developed for the quantification of phloroglucinol in human plasma. Resorcinol was used as internal standard, with plasma samples extracted using ethyl acetate. A centrifuged upper layer was then evaporated and reconstituted with mobile phase. The reconstituted samples were injected into a C(18) XTerra MS column (2.1 x 100 mm) with 3.5-microm particle size. The analytical column lasted for at least 500 injections. The mobile phase was 15% acetonitrile (pH 3.0), with flow-rate at 200 microl/min. The mass spectrometer was operated in negative ion mode with selective ion monitoring (SIM). Phloroglucinol was detected without severe interferences from plasma matrix when used negative ion mode. Phloroglucinol produced a parent molecule ([M-H](-)) at m/z 125 in negative ion mode. Detection of phloroglucinol in human plasma was accurate and precise, with quantification limit at 5 ng/ml. This method has been successfully applied to a study of phloroglucinol in human specimens.  相似文献   

9.
A sensitive and selective analytical method based on liquid chromatography-triple-quadrupole mass spectrometer has been developed to determine mildronate in human plasma and urine. The aim of this work was to find a valid method to study the pharmacokinetic profiles of mildronate in humans. Mildronate is a heart protection medicine, a carnitine's structural analogue, so levocarnitine was used as an internal standard for quantification. Under the electrospray ionization source positive ion mode, calibration curves with good linearities (r=0.9998 for plasma sample and r=0.9999 for urine sample) were obtained in the range of 1.0-20,000 ng ml(-1) for mildronate. The detection limit was 1 ng ml(-1). Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of mildronate in humans, and to the best of our knowledge, this is the first report on LC-MS-MS analysis of mildronate in plasma and urine.  相似文献   

10.
A quantitative and selective method has been developed for the determination of a novel local anaesthetic compound pentacaine, trans-2-(1-pyrrolidinyl)cyclohexyl-3-pentyloxycarbanilate hydrochloride, in biological samples. After ion pair extraction from 1 M HCl into 1,2-dichloroethane, pentacaine and a structurally related internal standard were derivatized to prevent thermal decomposition in the gas chromatograph. An on-column methylation technique with trimethylanilinium hydroxide was used. Determination was performed by gas chromatography/mass spectrometry (GC/MS) with selected ion monitoring. Interferences by endogenous lipophilic constituents were avoided by including an n-hexane wash before the ion pair extraction. This wash step did not reduce the drug recoveries. The method gave linear results over a concentration range of 5-100 ng ml-1 with a coefficient of variation less than 10% at 5 ng pentacaine ml-1. Specimens of plasma, whole blood, urine as well as in vitro preparations such as hepatic microsomes were successfully analysed.  相似文献   

11.
A stable-isotope based gas chromatography–tandem mass spectrometry–negative ion chemical ionization method was developed for the determination of norepinephrine (NE) levels in small volumes (25–100 μl) of plasma. NE was stabilized in plasma by the addition of semicarbazide and spiked with deuterium-labeled norepinephrine internal standard. The analytes were isolated from the plasma by solid-phase extraction using phenylboronic acid columns and derivatized using pentafluoropropionic anhydride. The derivatized analytes were chromatographed on a capillary column and detected by tandem mass spectrometry with negative ion chemical ionization. Unparalleled sensitivity and selectivity were obtained using this detection scheme, allowing the unambiguous analysis of trace levels of NE in small-volume plasma samples. Linear standard curves were obtained for NE over a mass range from 1 to 200 pg per sample. The method had a limit of quantitation of 10 pg NE/ml plasma when using a 100-μl sample aliquot (1 pg/sample). Accuracy for the analysis of plasma samples spiked with 10 to 200 pg NE/ml typically ranged from 100±10%, with RSD values of less than 10%. The methodology was applied to determine the effect of clonidine on plasma NE levels in conscious spontaneously hypertensive rats. Administration of clonidine (30 μg/kg) produced an 80% reduction in plasma NE accompanied by a 30% reduction in heart and mean arterial pressure that persisted >90 min after drug administration. The ability to take multiple samples from individual rats allowed the time course for the effect of clonidine to be mapped out using only one group of animals.  相似文献   

12.
An analytical procedure has been developed for the simultaneous determination of ketobemidone and its N-demethylated metabolite, norketobemidone. After isolation from plasma and re-extraction to acidic aqueous phase, the two aminophenols were extracted as ions pairs with tetrabutylammonium to dichloromethane, where derivatization with ethyl chloroformate took place. Determination was performed by gas chromatography mass spectrometry with selected ion monitoring. Ketobemidone and norketobemidone could be detected in plasma in a concentration of 1 ng ml-1 and 3 ng ml-1, respectively. Determinations were performed down to 5 ng ml-1. The relative standard deviation of the method in the analysis of 10 ng ml-1 of ketobemidone and norketobemidone, respectively, was 8% and 9% (n=10). The absolute recovery of unconjugated ketobemidone and norketobemidone through the method at the 100 ng ml-1 level was 91% and 85%, respectively. The method was applied to the determination of ketobemidone and norketobemidone in plasma from patients given ketobemidone. The concentrations of unconjugated norketobemidone was too small to be detected.  相似文献   

13.
The plasma was produced by focusing Nd:YAG laser pulses of 1064 nm wavelength on to a copper target at laser fluences of 5.35, 6.95, and 9.33 J/cm2. An ion collector placed along the target surface normal was used to record the time-of-flight (TOF) ion signal during plasma expansion in vacuum. The TOF ion pulses were deconvoluted using the Coulomb-Boltzmann-shifted function to estimate the available Cu ion charge states, equivalent plasma ion temperature, and accelerating potential in the nonequilibrium plasma. The maximum available ion charge state, equivalent plasma ion temperature, and accelerating potential are found to increase with laser fluence. In the local thermal equilibrium conditions, the accelerating potential can be supposed to apply across a distance of the order of the Debye length. The Debye length and, hence, the electric field in the laser produced plasma at three laser fluences values were estimated. The electric field was in the range of 1 MV/cm and increased with laser fluence. In the laser fluence range used in this work, the sum of thermal and adiabatic energy of the ion was slightly higher than its Coulomb energy.  相似文献   

14.
A rapid and sensitive liquid chromatographic/tandem mass spectrometric method for determination of misoprostol acid, the active metabolite of misoprostol, was developed and validated. Following liquid-liquid extraction, the analytes were separated using an isocratic mobile phase on a C(18) column. An API 4000 tandem mass spectrometer equipped with Turbo IonSpray ionization source was used as detector and was operated in the negative ion mode. Multiple reaction monitoring using the precursor to product ion combinations of m/z 367-249 and 296-269 was performed to quantify misoprostol acid and the internal standard hydrochlorothiazide, respectively. The method was linear in the concentration range of 10.0-3000 pg mL(-1) using 200 microL plasma. The lower limit of quantification was 10.0 pg mL(-1). The intra- and inter-day relative standard deviation over the entire concentration range was less than 8.3%. Accuracy determined at three concentrations (25.0, 200 and 2700 pg mL(-1) for misoprostol acid) ranged from -0.5 to 1.2% in terms of relative error. Each plasma sample was chromatographed within 3.5 min. The method was successfully used in a pharmacokinetic study of misoprostol in human plasma after an oral administration of 0.6 mg misoprostol.  相似文献   

15.
A sensitive method for the determination of clarithromycin in plasma is described, using high-performance liquid chromatographic separation with tandem mass spectrometric detection. Samples were prepared using liquid-liquid extraction and separated on a Supelco Discovery C18 column with a mobile phase consisting of acetonitrile, methanol and acetic acid. Detection was performed by a PE SCIEX API 2000 mass spectrometer in the multiple reaction monitoring (MRM) mode (LC-MS-MS) using TurbolonSpray ionization and monitoring the transition of the protonated molecular ion for clarithromycin at m/z 748.5 (M+1) to the predominant product ion of m/z 158.2. The mean recovery of clarithromycin was 87.3%, with a lower limit of quantification of 2.95 ng/ml when using 0.3-ml plasma. This high-throughput method was used to quantify 230 samples per day, and is sufficiently sensitive to be employed in pharmacokinetic studies.  相似文献   

16.
The strong ion approach provides a quantitative physicochemical method for describing the mechanism for an acid-base disturbance. The approach requires species-specific values for the total concentration of plasma nonvolatile buffers (A(tot)) and the effective dissociation constant for plasma nonvolatile buffers (K(a)), but these values have not been determined for human plasma. Accordingly, the purpose of this study was to calculate accurate A(tot) and K(a) values using data obtained from in vitro strong ion titration and CO(2) tonometry. The calculated values for A(tot) (24.1 mmol/l) and K(a) (1.05 x 10(-7)) were significantly (P < 0.05) different from the experimentally determined values for horse plasma and differed from the empirically assumed values for human plasma (A(tot) = 19.0 meq/l and K(a) = 3.0 x 10(-7)). The derivatives of pH with respect to the three independent variables [strong ion difference (SID), PCO(2), and A(tot)] of the strong ion approach were calculated as follows: dpH/dSID(+) = [1 + 10(pK(a)-pH)](2)/(2.303 x [SPCO(2)10(pH-pK'(1)[1 + 10(pK(a)-pH](2) + A(tot)10(pK(a)-PH]]; dpH/dPCO(2) = S10(-pK'(1)/[2.303[A(tot)10(pH)(10(pH + 10(pK(a))(-2) - SID(+)10(-pH)]], dpH/dA(tot) = -1/[2.303[SPCO(2)10(pH-pK'(1) + SID(+)10(pK(a)-pH)]], where S is solubility of CO(2) in plasma. The derivatives provide a useful method for calculating the effect of independent changes in SID(+), PCO(2), and A(tot) on plasma pH. The calculated values for A(tot) and K(a) should facilitate application of the strong ion approach to acid-base disturbances in humans.  相似文献   

17.
A selective, sensitive, rapid and reproducible high-performance liquid chromatographic method for the determination of terazosin in plasma is described. The structurally related compound prazosin was used as an internal standard. The method comprises extraction with methylene chloride followed by chromatography on a C18 reversed-phase column. The compounds were detected using spectrofluorimetry. The absolute recoveries were more than 90% with a minimal detection of 1 ng/ml and calibration curve was linear between 1 and 80 ng/ml.  相似文献   

18.
Gas chromatography mass spectrometry with selected ion monitoring has been used to develop a method for the quantification of ketotifen and its demethylated, 10-hydroxy and 10-hydroxy demethylated metabolites in human plasma. The minimum detectable concentrations for ketotifen and its demethylated metabolites were 50 pg ml-1 and 300 pg ml-1 for the 10-hydroxy metabolite. The methodology has been applied in studies of the kinetics of the drug in man, and plasma levels of the unchanged drugs and its metabolites in free and conjugated form are reported.  相似文献   

19.
A method for calculating the effective charge of fast ions decelerated in a hot dense plasma is proposed. The method is based on the known experimental dependence of the effective charge of an ion decelerated in cold matter on its velocity. The ion velocity in this dependence is replaced with the velocity of an ion relative to plasma electrons, averaged over the Fermi-Dirac distribution. Using results of numerical calculations performed in a wide range of plasma parameters (from a Maxwellian plasma to a fully degenerate one), a scale-invariant representation of the effective charge of a decelerating ion as a function of its initial velocity and the plasma temperature and density is obtained. An analytical formula fitting the calculated results to within 5% is derived. The obtained dependences of the effective charge are incorporated in the model describing deceleration of fast ions in plasma. Using this model, the stopping powers of krypton and lead ions in a relatively cold rarefied gas-discharge plasma and hot ICF plasma are calculated. The results of calculations are shown to agree satisfactorily with available experimental data.  相似文献   

20.
A method for the analysis of tamoxifen and its metabolites in plasma from tamoxifen treated breast cancer patients, by capillary GC-MS using selected ion monitoring has been developed. Metabolite extraction was carried out on a Sep-pak C18 cartridge and metabolite purification by selective ion exchange chromatographic steps. Satisfactory recovery of radioactive standards through the extraction and purification steps was obtained. The method was shown to be accurate and precise with precision coefficient of variation values ranging from 4.3-11% for tamoxifen and its metabolites. Tamoxifen, 4-hydroxytamoxifen, metabolite Y and N-desmethyltamoxifen were identified with certainty in patient plasma on the basis of GC relative retention times and mass spectral comparison with authentic standards; because of their low abundance in plasma cis-metabolite E and 3,4-dihydroxytamoxifen could only be tentatively identified but identical GC behaviour and a satisfactory comparison of the abundance of key fragment ions was achieved. The tamoxifen and metabolite concentration ranges (ng X ml-1) in the group of patients who received 40 or 80 ng tamoxifen for 14 days were tamoxifen, 307-745; N-desmethyltamoxifen, 185-491; 4-hydroxytamoxifen, 1.4-2.5; 3,4-dihydroxytamoxifen, 0.7-2.0; metabolite Y, 19.0-112; and metabolite E1, 0.9-2.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号