首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R Koren  S Mildvan 《Biochemistry》1977,16(2):241-249
The interaction of Mn2+, substrates and initiators with RNA polymerase have been studied by kinetic and magnetic resonance methods. As determined by electron paramagnetic resonance, Mn2+ binds to RNA polymerase at one tight binding site with a dissociation constant less than 10 muM and at 6 +/- 1 weak binding sites with dissociation constants 100-fold greater. The binding of Mn2+ to RNA polymerase at both types of sites causes an order of magnitude enhancement of the paramagnetic effect of Mn2+ on the longitudinal relaxation rate of water protons, indicating the presence of residual water ligands on the enzyme-bound Mn2+. A kinetic analysis of the Mn2+-activated enzyme with poly(dT) as template indicates the substrate to be MnATP under steady-state conditions in the presence or absence of the initiator ApA. ATP and UTP interact with the tightly bound Mn2+ to form ternary complexes with approximately 50% greater enhancement factors. The dissociation constant of MnATP from the tight Mn2+ site as determined by longitudinal proton relaxation rate (PRR) titration (4.7 muM) is similar to the KM of MnATP in the ApA-initiated RNA polymerase reaction (10 +/- 3 muM) but not in the ATP-initiated reaction (160 +/- 30 muM). Similarly, the dissociation constant of the substrate MnUTP from the tight Mn2+ site (90 muM) is in agreement with the KM of MnUTP (101 +/- 13 muM) when poly[d(A-T)]-poly[d(A-T)] is used as template, indicating the tight Mn2+ site to be the catalytic site for RNA chain elongation. Manganese adenylyl imidodiphosphate (MnAMP-PNP) has been found to be a substrate for RNA polymerase. It has the same affinity as MnATP for the tight site but, unlike the results obtained with MnATP, the enhancement is decreased by 43% in the enzyme Mn-AMP-PNP complex. These results suggest that the enzyme-bound Mn2+ interacts with the leaving pyrophosphate group. The initiators ApA and ApU and the inhibitor rifamycin interact with the enzyme-Mn2+ complex producing small (15-20%) decreases in the enhancement. The dissociation constant of ApA estimated from PRR data (less than or equal to 1.5 muM) agrees with that determined kinetically (1.0 +/- 0.5 muM) as the concentration of ApA required to produce half-maximal change in the KM of MnATP. In the presence of the initiation specific reagents ApA, ApU, or rifamycin, the affinity of the enzyme-Mn complex for ATP or UTP shows little change. However, ATP and UTP no longer increase the enhancement factor of the tightly bound Mn2+ but decrease it by 30-55%, indicating a change in the environment of the Mn2+-substrate complex on the enzyme when the initiation site is either occupied or blocked. Although the role of the six weak Mn2+ binding sites is not clear, the presence of a single tightly bound Mn2+ at the catalytic site for chain elongation which interacts with the substrate reinforces the number of active sites as one per molecule of holoenzyme and provides a paramagnetic reference point for further structural studies.  相似文献   

2.
Adenosine, TMP, ADP, ATP and UpA along with guanosine and tis analogous derivatives have different reactivity towards [alpha-32P]UTP in abortive initiation reactions catalyzed by E. coli RNA polymerase on T2 DNA in the presence of Mg2+ or Mn2+. Rifampicin moderately inhibited almost all of the above mentioned reactions, except the ATP and the GTP which were even 2.5 times more reactive in the presence of this antibiotic.  相似文献   

3.
The poly(A) polymerases from the cytosol and ribosomal fractions of Ehrlich ascites tumour cells are isolated and partially purified by DEAE-cellulose and phosphocellulose column chromatography. Two distinct enzymes are identified: (a) a cytosol Mn2+-dependent poly(A) polymerase (ATP:RNA adenylyltransferase) and (b) a ribosome-associated enzyme defined tentatively as ATP(UTP): RNA nucleotidyltransferase. The cytosol poly(A) polymerase is strictly Mn2+-dependent (optimum at 1 mM Mn2+) and uses only ATP as substrate, poly(A) is a better primer than ribosomal RNA. The purified enzyme is free of poly(A) hydrolase activity, but degradation of [3H]poly(A) takes place in the presence of inorganic pyrophosphate. Most likely this enzyme is of nuclear origin. The ribosomal enzyme is associated with the ribosomes but it is found also in free state in the cytosol. The purified enzyme uses both ATP and UTP as substrates. The substrate specificity varies depending on ionic conditions: the optimal enzyme activity with ATP as substrate is at 1 mM Mn2+, while that with UTP as substrate is at 10--20 mM Mg2+. The enzymes uses both ribosomal RNA and poly(A) [but not poly(U)] as primers. The purified enzyme is free of poly(A) hydrolase activity.  相似文献   

4.
5.
Activation of membrane-associated thiamin triphosphatase from rat brain requires a divalent cation (Mg2+, Ca2+, or Mn2+). The optimum concentration of Mg2+ necessary for maximal enzyme activity varies with substrate concentration; conversely, the maximal rate of hydrolysis attainbale by increasing thiamin triphosphate concentration is directly proportional to [Mg2+] for all levels of Mg2+ below that of the substrate. Under appropriate conditions, the Km of the thiamin triphosphatase for Mg2+ and for thiamin triphosphate are shown to be identical. Dissociation constants (Kd) for the binding of Mg2+ to thiamin triphosphate, thiamin diphosphate, and thiamin were determined; kinetic data re-expressed in terms of [Mg2+-thiamin triphosphate] conform to simple single substrate predictions, suggesting that the true enzyme substrate may be the Mg2+-thiamin triphosphate complex. Excess free Mg2+ inhibits thiamin triphosphatase activity competitively while excess free thiamin triphosphate in concentrations up to 10 times Km has no effect on the membrane-bound enzyme.  相似文献   

6.
The mechanism of biosynthetic, transferase, ATPase, and transphosphorylation reactions catalyzed by unadenylylated glutamine synthetase from E. coli was studied. Activation complex(es) involved in the biosynthetic reaction are produced in the presence of either Mg2+ or Mn2+ ; however, with the Mn2+-enzyme inhibition by the product, ADP, is so great that the overall forward biosynthetic reaction cannot be detected with the known assay methods. Binding studies show that substrates (except for NH3 and NH2OH which are not reported here) can bind to the enzyme in a random manner and that binding of the ATP-glutamate, ADP-Pi or ADP-arsenate pairs is strongly synergistic. Inhibition and binding studies show that the same binding site is utilized for glutamate and glutamine in biosynthetic and transferase reactions, respectively, and that a common nucleotide binding site is used for all reactions studied. Studies of the reverse biosynthetic reaction and results of fluorescent titration experiments suggest that both arsenate and orthophosphate bind at a site which overlaps the gamma-phosphate site of nucleoside triphosphate. In the reverse biosynthetic and transferase reactions, ATP serves as a substrate for the Mn2+-enzyme but not for the Mg2+-enzyme. The ATP supported transferase activity of Mn2+-enzyme is probably facilitated by the generation of ADP through ATP hydrolysis. When AMP was the only nucleotide substrate added, it was converted to ATP with concomitant formation of two equivalents of glutamate, under the reverse biosynthetic reaction conditions, and no ADP was detected. The reversibility of 180 transfer between orthophosphate and gamma-acyl group of glutamate was confirmed. ATPase activity of Mg2+ and Mn2+ unadenylylated enzymes is about the same. Both enzymes forms catalyze transphosphorylation reactions between various purine nucleoside triphosphates and nucleoside diphosphates under biosynthetic reaction conditions. The data are consistent with the hypothesis that a single active center is utilized for all reactions studied. Two stepwise mecanisms that could explain the results are discussed.  相似文献   

7.
Glutamine synthetase in Escherichia coli is regulated by adenylation and deadenylation reactions. The adenylation reaction converts the divalent cation requirement of the enzyme from Mg2+ to Mn2+. Previously, the catalytic action of unadenylated glutamine synthetase was elucidated by monitoring the intrinsic tryptophan fluorescence change accompanying substrate binding. However, due to the lack of changes in the tryptophan fluorescence, a similar study could not be done with the adenylated enzyme. In this study, therefore, an extrinsic fluor is introduced into the adenylated glutamine synthetase by adenylating the enzyme with 2-aza-1,N6-ethenoadenosine triphosphate, a fluorescent analog of ATP. The modified enzyme (aza-epsilon-glutamine synthetase) exhibits catalytic and kinetic properties similar to those of the naturally adenylated enzyme. The results of fluorometric studies on this aza-epsilon-glutamine synthetase indicated that L-glutamate and ATP bind to both Mn2+ and Mg2+ forms of the enzyme in a random order, but only the Mn2+ form is capable of forming a highly reactive enzyme-bound intermediate which is a prerequisite for the reaction with NH4+ to form products. The extrinsic fluorescence changes are also used to determine the binding constants of various substrates and inhibitors of both the biosynthetic and gamma-glutamyl transfer reactions.  相似文献   

8.
The ATP X Mg2+-dependent phosphoprotein phosphatase has been purified from bovine heart to near-homogeneity. It is a heterodimer (75 kDa) consisting of a catalytic (C) subunit (40 kDa) and a regulatory (R) subunit (35 kDa). The R subunit, which is identical to inhibitor-2, is transiently phosphorylated during activation of the enzyme catalyzed by phosphatase-1 kinase (FA). Maximal activation requires preincubation of the phosphatase with FA and ATP X Mg2+. However, relatively low yet definitively demonstrable basal activity can be expressed by Mg2+ alone (ranging from 3% to 10% of the FA X ATP X Mg activity, depending on the degree of endogenous proteolytic damage of the phosphatase during purification), but not by either FA or ATP alone. Limited trypsinization results in a rapid and total degradation of the R subunit and partial degradation of the 40-kDa C subunit to active proteins of 35-38 kDa. The resulting 'nicked' C subunit of 35-38 kDa is no longer dependent on FA for activation and can be fully activated by Mg2+ (or Mn2+) alone. Endogenous proteolytic damage of the R subunit also results in an increase of activity that can be expressed by M2+ alone with a concomitant decrease of the FA-dependent activation. Although Mn2+ is slightly more effective than Mg2+ in expressing the holoenzyme basal activity, the activation by Mn2+ is only about 60% of that of Mg2+ when FA and ATP are also present. In the activation by adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), Co2+ is the most effective cofactor. The activation by ATP[gamma S] X Co2+ is more than 50% of that by ATP X Mg2+. The present studies indicate that Mg2+ is the natural divalent cation for the FA-catalyzed activation in which Mg2+ plays two distinctly different roles: it forms Mg2+ X ATP which serves as a substrate for the kinase; it acts as an essential cofactor for the catalytic function of the phosphatase. The discrepancies between the results obtained by this and other laboratories with respect to the effectiveness of Mg2+ and ATP[gamma S] in the activation of the phosphatase are discussed.  相似文献   

9.
1. ATP inhibits NAD(P)(+)-dependent malic enzyme activity by competing with the essential activators Mn2+ and Mg2+. 2. The kinetics fit an equation of co-operative kind with Ki of 26 microM and KA of 11.3 microM for ATP/Mn2+ competition; with Ki of 1.1 mM and KA of 0.96 mM for ATP/Mg2+ competition. 3. In the absence of the inhibitor, the co-operativity index increases from 1.77 to greater than 4 in the presence of ATP, in the case of ATP/Mn2+ competition, while it increases from 1.88 to greater than 9 for ATP/Mg2+ competition.  相似文献   

10.
8-oxy-GTP was obtained via reaction of GTP with ascorbic acid and addition of hydrogen peroxide. 8-oxy-GTP is recognized and displays substrate properties of UTP on substitution of 8-oxy-GTP for UTP in polynucleotide synthesis catalyzed by E. coli RNA polymerase on a poly[d(A-T)].poly[d(A-T)] template. Such incorporation does not take place at equimolar quantities of GTP and 8-Br-GTP. The incorporation of 8-oxy-GTP instead of UTP, is 2.5-3 times higher upon replacement of Mg2+ by Mn2+ ions. The dinucleotide ApU serving as an initiator rises the incorporation level of 8-oxy-GTP both for Mg2+ and Mn2+ ions. 8-oxy-GTP slightly inhibits poly[r(A-U)] synthesis, but UTP strongly inhibits the incorporation of 8-oxy-GTP. [alpha-32P] 8-oxy-GTP is incorporated mainly instead of UTP, but it can be incorporated also during the substitution of 8-oxy-GTP for ATP.  相似文献   

11.
The kinetic characteristics of substrate utilization by hepatic adenylate cyclase were investigated under a variety of incubation conditions, including veriations in pH, [substrate], [Mg2+], and in the absence or presence of glucagon. Activities were compared with ATP and 5'-adenylylimidodiphosphate (App(NH)p) as substrates. The Km for both substrates was about 50 muM; Vmax given with App(NH)p was about 40% lower than obtained with ATP as substrate. In the presence of a saturating concentration of substrate (1 mM), basal activity was increased 4-fold by increasing [Mg2+] from 5 to 50 mM. The stimulatory effect of Mg2+ was not due to an allosteric action since basal activity was only marginally enhanced (40%) when the substrate concentration was reduced to 10 muM. As suggested by deHaen ((1974 J. Biol. Chem. 249, 2756), it is likely that Mg2+ increases enzyme activity by decreasing the concentration of an inhibitory, unchelated form of substrate that competes with the productive magnesium-substrate complex at the active site. Activity-pH profiles differed with ATP and App(NH)p as substrates; a shift in pH optimum was observed which correlated with the different pKa of the terminal phosphate groups of ATP and App(nh)p, and which reflect the concentration of protonated substrate (ATPH-3 minus) present in the incubation medium. Accordingly, protonated substrate is the predominant inhibitory species of unchelated substrate and probably has a considerably higher affinity for the active site than does the magnesium-substrate complex. Glucagon-stimulated activity was less susceptible to inhibition by protonated substrate than is the basal state as evidenced by lower stimulatory effect when the [Mg2+] was increased from 5 to 20 mM. However, increasing the [Mg2+] from 20 to 50 mM resulted in marked inhibition of glucagon-stimulated activity, particularly in the presence of 10 muM substrate. Conversely, at a fixed [Mg2+], concentrations of substrate at least 20-fold higher than the Km were required to achieve maximal hormone-stimulated activity. These findings suggest that the unchelated, fully ionized form of substrate serves as an activating ligand, as has been observed with guanine nucleotides at considerably lower concentrations. Thus, Mg2+ affects adenylate cyclase activity by forming the productive substrate complex and by titrating the inhibitory protonated and activating free forms of substrate. As a result of these effects of unchelated substrate, it proved difficult to evaluate the kinetic parameters involved in substrate binding and utilization and the effects of hormone thereon when substrate was added as the only source of activating ligand. However, linear Michaelis kinetic data were obtained by adding the activating ligand 5'-guanylylimidodiphosphate with glucagon and by making appropriate adjustments of pH and [Mg2+]. Vmax was increased 4-fold without changes in Km by the actions of 5'-guanylylimidodiphosphate and glucagon.  相似文献   

12.
The reasons underlying reported discrepancies in the effects of ATP, ADP, adenosine 5'-[beta gamma-methylene]triphosphate, AMP + PPi, P-chloromercuribenzoate and F- on RNA efflux from isolated rat liver nuclei and on nuclear envelope nucleoside triphosphatase activity were investigated. The stimulatory effect of ADP was attributed to myokinase activity associated with the nuclei; this activity was eluted on repeated washing with nuclear incubation medium. In the absence of Ca2+ and Mn2+, ATP, adenosine 5'[beta gamma-methylene]triphosphate and AMP +PPi were found to promote release of both DNA and RNA. In the presence of 0.5 mM-Ca2+ and 9.3 mM-Mn2+, only ATP promoted RNA efflux to a significant extent. In the absence of spermidine, Ca2+ and Mn2+, nuclei released large quantities of DNA and RNA into the medium; this effect was promoted by p-chloromereuribenzoate. In the presence of the three cations, however, p-chloromercuribenzoate inhibited RNA efflux. F- caused a slight leakage of DNA from nuclei. The results are discussed in terms of models for the effects of ATP and analogues on RNA efflux and nuclear stability.  相似文献   

13.
P Bhargava  D Chatterji 《FEBS letters》1988,241(1-2):33-37
The binding affinity between the substrates ATP and UTP with the purified yeast RNA polymerase II have been studied here in the presence and absence of Mn2+. In the absence of template DNA, both ATP and UTP showed tight binding with the enzyme without preference for any specific nucleotide, unlike Escherichia coli RNA polymerase. Fluorescence titration of the tryptophan emission of the enzyme by nucleoside triphosphate substrates gave an estimated Kd value around 65 microM in the absence of Mn2+ whereas in the presence of Mn2+, the Kd was 20 microM. The effect of substrates on the longitudinal relaxation of the HDO proton in enzyme-substrate complex also yielded a similar Kd value.  相似文献   

14.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

15.
Novel RNA polymerase activities (termed type II reaction) can be found in toluene-treated Escherichia coli with Ca2+, Fe2+, or endogenously bound cations, probably Mg2+. These activities are distinguishable from the well characterized DNA-dependent RNA polymerase (type I reaction) by: (i) their divalent cation requirements, i.e., the classical enzyme is activated by exogenously added Mn2+, Mg2+, or CO2+ ions; (ii) their relative resistance to inhibition by actinomycin D, rifampicin, and streptolydigin; (iii) their selective synthesis of low molecular weight RNA; (iv) their sensitivity to inhibition by arabinonucleoside 5'-triphosphates or deoxyribonucleoside 5'-triphosphates; and (v) the strict requirement for ATP in Ca2+ and bound cation-activated reactions. The Ca2+-activated and endogenous RNA polymerase activities are inhibited by orthophosphate. The properties of the type II RNA polymerase(s) are compared with those of polynucleotide phosphorylase, and dnaG gene product, and the RNA polymerase described by Ohasa and Tsugita.  相似文献   

16.
Arnold JJ  Gohara DW  Cameron CE 《Biochemistry》2004,43(18):5138-5148
The use of Mn(2+) as the divalent cation cofactor in polymerase-catalyzed reactions instead of Mg(2+) often diminishes the stringency of substrate selection and incorporation fidelity. We have solved the complete kinetic mechanism for single nucleotide incorporation catalyzed by the RNA-dependent RNA polymerase from poliovirus (3D(pol)) in the presence of Mn(2+). The steps employed during a single cycle of nucleotide incorporation are identical to those employed in the presence of Mg(2+) and include a conformational-change step after nucleotide binding to achieve catalytic competence of the polymerase-primer/template-nucleotide complex. In the presence of Mn(2+), the conformational-change step is the primary determinant of enzyme specificity, phosphoryl transfer appears as the sole rate-limiting step for nucleotide incorporation, and the rate of phosphoryl transfer is the same for all nucleotides: correct and incorrect. Because phosphoryl transfer is the rate-limiting step in the presence of Mn(2+), it was possible to determine that the maximal phosphorothioate effect in this system is in the range of 8-11. This information permitted further interrogation of the nucleotide-selection process in the presence of Mg(2+), highlighting the capacity of this cation to permit the enzyme to use the phosphoryl-transfer step for nucleotide selection. The inability of Mn(2+) to support a reduction in the efficiency of phosphoryl transfer when incorrect substrates are employed is the primary explanation for the loss of fidelity observed in the presence of this cofactor. We propose that the conformational change involves reorientation of the triphosphate moiety of the bound nucleotide into a conformation that permits binding of the second metal ion required for catalysis. In the presence of Mg(2+), this conformation requires interactions with the enzyme that permit a reduction in catalytic efficiency to occur during an attempt to incorporate an incorrect nucleotide. Adventitious interactions in the cofactor-binding site with bound Mn(2+) may diminish fidelity by compensating for interaction losses used to modulate catalytic efficiency when incorrect nucleotides are bound in the presence of Mg(2+).  相似文献   

17.
18.
19.
A detailed steady-state kinetic investigation of the hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase is reported. The activity was studied in the presence of (i) Na+ (130 mM), K+ (20 mM) and micromolar ATP concentrations and Na+ (150 mM) the ('Na+-enzyme'). The data obtained lead to the following results: 1. The action of each enzyme may be described by a simple kinetic mechanism with one (Na+-enzyme) or two ((Na+ + K+)-enzyme) dead-end Mg complexes. 2. For both enzymes, both MgATP and free ATP are substrates, with Mg2+, in the latter case, as the second substrate. 3. For each enzyme, the complete set of kinetic constants (seven for the Na+-enzyme, eight for the (Na+ + K+)-enzyme) are determined from the data. 4. For each enzyme it is shown that, in the alternate substrate mechanism obtained, the ratio of net steady-state flux along the 'MgATP pathway' to that of the 'ATP-Mg pathway' increases linearly with the concentration of free Mg2+. The parameters of this function are determined from the data. As a result of this, at high (greater than 3 mM) free Mg2+ concentrations the alternate substrate mechanism degenerates into a 'limiting' kinetic mechanism, with MgATP as the (essentially) sole substrate, and Mg2+ as an uncompetitive (Na+-enzyme) or non-competitive ((Na+ + K+)-enzyme) inhibitor.  相似文献   

20.
Studies of Escherichia coli membranes that were highly enriched in the Salmonella enterica serovar Typhimurium PhoQ protein showed that the presence of ATP and divalent cations such as Mg2+, Mn2+, Ca2+, or Ba2+ resulted in PhoQ autophosphorylation. However, when Mg2) or Mn2+ was present at concentrations higher than 0.1 mM, the kinetics of PhoQ autophosphorylation were strongly biphasic, with a rapid autophosphorylation phase followed by a slower dephosphorylation phase. A fusion protein lacking the sensory and transmembrane domains retained the autokinase activity but could not be dephosphosphorylated when Mg2+ or Mn2+ was present at high concentrations. The instability of purified [32P]phospho-PhoP in the presence of PhoQ-containing membranes indicated that PhoQ also possesses a phosphatase activity. The PhoQ phosphatase activity was stimulated by increasing the Mg2+ concentration. These data are consistent with a model in which Mg2+ binding to the sensory domain of PhoQ coordinately regulates autokinase and phosphatase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号