首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taste papillae are ectodermal specializations that serve to house and distribute the taste buds and their renewing cell populations in specific locations on the tongue. We previously showed that Sonic hedgehog (Shh) has a major role in regulating the number and spatial pattern of fungiform taste papillae on embryonic rat tongue, during a specific period of papilla formation from the prepapilla placode. Now we have immunolocalized the Shh protein and the Patched receptor protein (Ptc), and have tested potential roles for Shh in formation of the tongue, emergence of papilla placodes, development of papilla number and size, and maintenance of papillae after morphogenesis is advanced. Cultures of entire embryonic mandible or tongues from gestational days 12 to 18 [gestational or embryonic days (E)12-E18] were used, in which tongues and papillae develop with native spatial, temporal, and molecular characteristics. The Shh signaling pathway was disrupted with addition of cyclopamine, jervine, or the 5E1 blocking antibody. Shh and Ptc proteins are diffuse in prelingual tissue and early tongue swellings, and are progressively restricted to papilla placodes and then to regions of developing papillae. Ptc encircles the dense Shh immunoproduct in papillae at various stages. When the Shh signal is disrupted in cultures of E12 mandible, tongue formation is completely prevented. At later stages of tongue culture initiation, Shh signal disruption alters development of tongue shape (E13) and results in a repatterned fungiform papilla distribution that does not respect normally papilla-free tongue regions (E13-E14). Only a few hours of Shh signal disruption can irreversibly alter number and location of fungiform papillae on anterior tongue and elicit papilla formation on the intermolar eminence. However, once papillae are well formed (E16-E18), Shh apparently does not have a clear role in papilla maintenance, nor does the tongue retain competency to add fungiform papillae in atypical locations. Our data not only provide evidence for inductive and morphogenetic roles for Shh in tongue and fungiform papilla formation, but also suggest that Shh functions to maintain the interpapilla space and papilla-free lingual regions. We propose a model for Shh function at high concentration to form and maintain papillae and, at low concentration, to activate between-papilla genes that maintain a papilla-free epithelium.  相似文献   

2.
Although canonical Wnt signaling is known to regulate taste papilla induction and numbers, roles for noncanonical Wnt pathways in tongue and taste papilla development have not been explored. With mutant mice and whole tongue organ cultures we demonstrate that Wnt5a protein and message are within anterior tongue mesenchyme across embryo stages from the initiation of tongue formation, through papilla placode appearance and taste papilla development. The Wnt5a mutant tongue is severely shortened, with an ankyloglossia, and lingual mesenchyme is disorganized. However, fungiform papilla morphology, number and innervation are preserved, as is expression of the papilla marker, Shh. These data demonstrate that the genetic regulation for tongue size and shape can be separated from that directing lingual papilla development. Preserved number of papillae in a shortened tongue results in an increased density of fungiform papillae in the mutant tongues. In tongue organ cultures, exogenous Wnt5a profoundly suppresses papilla formation and simultaneously decreases canonical Wnt signaling as measured by the TOPGAL reporter. These findings suggest that Wnt5a antagonizes canonical Wnt signaling to dictate papilla number and spacing. In all, distinctive roles for Wnt5a in tongue size, fungiform papilla patterning and development are shown and a necessary balance between non-canonical and canonical Wnt paths in regulating tongue growth and fungiform papillae is proposed in a model, through the Ror2 receptor.  相似文献   

3.
Fungiform papillae are epithelial specializations that develop in a linear pattern on the anterior mammalian tongue and differentiate to eventually contain taste buds. Little is known about morphogenetic and pattern regulation of these crucial taste organs. We used embryonic rat tongue, organ cultures to test roles for bone morphogenetic proteins, BMP2, 4 and 7, and antagonists noggin and follistatin, in development of papillae from a stage before morphological initiation (E13) or from a stage after the pre-papilla placodes have formed (E14). BMPs and noggin proteins become progressively restricted to papilla locations during tongue development. In E13 cultures, exogenous BMPs or noggin induce increased numbers of fungiform papillae, in a concentration-dependent manner, compared to standard tongue cultures; BMPs, but not noggin, lead to a decreased tongue size at this stage. In E14 cultures, however, exogenous BMP2, 4 or 7 each inhibits papilla formation so that there is a decrease in papilla number. Noggin substantially increases number of papillae in E14 cultures. Using beads for a highly localized protein delivery, papillae are inhibited in the surround of BMP-soaked beads and induced in large clusters around noggin-soaked beads. Follistatin, presented in culture medium or by bead, does not alter papilla formation or number. In all fungiform papillae that form under various culture conditions, the molecular marker, sonic hedgehog, is within each papilla. However, the BMP inhibitory effect on papillae is not prevented by disrupting sonic hedgehog signaling through addition of cyclopamine to cultures. BMPs and noggin alter cell proliferation in tongue epithelium in opposite ways, demonstrated with Ki67 immunostaining. We propose that the BMPs and noggin, colocalized within papilla placodes and the fungiform papillae per se, have opposing inhibitory and activating or inducing roles in papilla development in linear patterns. We present a model for these effects.  相似文献   

4.
The appearance and differentiation of papillae on dorsal andlateral surfaces of human embryonic and fetal tongues, at variousdevelopmental ages, were studied by scanning electron microscopy.Formaldehyde and phosphate buffer fixation provided satisfactorypreservation. At 8–9 weeks, the anterior two-thirds ofthe tongue showed no obvious signs of papillae. In contrast,just anterior to the sulcus terminalis rounded elevations wereseen, suggesting initial signs of circumvallate papillae. At10–13 weeks, the distribution and shape of elevationson the anterior two-thirds of the tongue indicated the beginningof fungiform papillae. Openings located on the dorsal surfaceof many of these fungiforms contained an amorphous central structureprojecting out of the papilla. First signs of foliate papillaewere seen at 10 weeks. At 15–18 weeks, fungiform and filiformpapillae were recognized, although sometimes their borders wereobscured by scaling epithelial cells. At 23–26 weeks,all papillae exhibited their adult form. *Presented, in part, at the VIth International Symposium onOlfaction and Taste, Gif-sur-Yvette, Paris, France, 15–17thJuly, 1977.  相似文献   

5.
Subepithelial blood vessels of the rat lingual papillae and their spatial relations to the connective tissue papillae and surface structures were demonstrated by light and scanning electron microscopy. In the rat, four types of papillae were distinguished on the dorsal surface of the tongue, i.e. the filiform, fungiform, foliate and circumvallate papillae. Vascular beds of various appearance were found in all four types of lingual papillae: a simple or twisted capillary loop in the filiform papilla; a basket- or petal-like network in the fungiform papilla; a ring-like network in the foliate papilla, and a conglomerated network surrounded by double heart-shaped capillary networks in the circumvallate papilla. These characteristic vascular beds corresponded to the shape of the connective tissue papillae and surface structures. The vascular bed beneath the gustatory epithelium in the fungiform, foliate and circumvallate papilla consisted of fine capillary networks next to the taste buds.  相似文献   

6.
Brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4) are essential for the survival of geniculate ganglion neurons, which provide the sensory afferents for taste buds of the anterior tongue and palate. To determine how these target-derived growth factors regulate gustatory development, the taste system was examined in transgenic mice that overexpress BDNF (BDNF-OE) or NT4 (NT4-OE) in basal epithelial cells of the tongue. Overexpression of BDNF or NT4 caused a 93 and 140% increase, respectively, in the number of geniculate ganglion neurons. Surprisingly, both transgenic lines had severe reduction in fungiform papillae and taste bud number, primarily in the dorsal midregion and ventral tip of the tongue. No alterations were observed in taste buds of circumvallate or incisal papillae. Fungiform papillae were initially present on tongues of newborn BDNF-OE animals, but many were small, poorly innervated, and lost postnatally. To explain the loss of nerve innervation to fungiform papillae, the facial nerve of developing animals was labeled with the lipophilic tracer DiI. In contrast to control mice, in which taste neurons innervated only fungiform papillae, taste neurons in BDNF-OE and NT4-OE mice innervated few fungiform papillae. Instead, some fibers approached but did not penetrate the epithelium and aberrant innervation to filiform papillae was observed. In addition, some papillae that formed in transgenic mice had two taste buds (instead of one) and were frequently arranged in clusters of two or three papillae. These results indicate that target-derived BDNF and NT4 are not only survival factors for geniculate ganglion neurons, but also have important roles in regulating the development and spatial patterning of fungiform papilla and targeting of taste neurons to these sensory structures.  相似文献   

7.
8.
9.
In order to understand differences in taste sensitivities of taste bud cells between the anterior and posterior part of tongue, it is important to analyze the regional expression patterns of genes related to taste signal transduction on the tongue. Here we examined the expression pattern of a taste receptor family, the T1r family, and gustducin in circumvallate and fungiform papillae of the mouse tongue using double-labeled in situ hybridization. Each member of the T1r family was expressed in both circumvallate and fungiform papillae with some differences in their expression patterns. The most striking difference between fungiform and circumvallate papillae was observed in their co-expression patterns of T1r2, T1r3, and gustducin. T1r2-positive cells in fungiform papillae co-expressed T1r3 and gustducin, whereas T1r2 and T1r3 double-positive cells in circumvallate papillae merely expressed gustducin. These results suggested that in fungiform papillae, gustducin might play a role in the sweet taste signal transduction cascade mediated by a sweet receptor based on the T1r2 and T1r3 combination, in fungiform papillae.  相似文献   

10.
The dorsal surface of the mammalian tongue is covered with four kinds of papillae, fungiform, circumvallate, foliate and filiform papillae. With the exception of the filiform papillae, these types of papillae contain taste buds and are known as the gustatory papillae. The gustatory papillae are distributed over the tongue surface in a distinct spatial pattern. The circumvallate and foliate papillae are positioned in the central and lateral regions respectively and the fungiform papillae are distributed on the anterior part of the tongue in a stereotyped array. The patterned distribution and developmental processes of the fungiform papillae indicate some similarity between the fungiform papillae and the other epithelial appendages, including the teeth, feathers and hair. This is because 1) prior to the morphological changes, the signaling molecules are expressed in the fungiform papillae forming area with a stereotyped pattern; 2) the morphogenesis of the fungiform papillae showed specific structures in early development, such as epithelial thickening and mesenchymal condensation and 3) the fungiform papillae develop through reciprocal interactions between the epithelium and mesenchymal tissue. These results led us to examine whether or not the early organogenesis of the fungiform papillae is a good model system for understanding both the spacing pattern and the epithelial-mesenchymal interaction during embryogenesis.  相似文献   

11.
The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions.  相似文献   

12.
To study the dorsal surface of the human tongue using a scanning electron microscopy (SEM), tissue specimens were taken from the anterior part of the tongues of 15 individuals aged from 21- to 28-years-old. The formalin-fixed samples were processed routinely for SEM. With SEM the surface of the normal tongue mucosa was shown to be rather evenly covered by filiform papillae, with some fungiform papillae scattered among them. Filiform papillae consisted of two parts: the body and hairs. The mucosal surface of the body was smooth; the squamous epithelial cells were polygonal, and their boundaries were prominent. On the surface of the superficial epithelial cells were parallel or branching microplicae. Each filiform papilla had 6-10 hairs, which were scaled and covered by an extensive plaque of microorganism. The upper surface of the fungiform papillae was smooth; only a few desquamating cells were seen. The superficial cells had a pitted appearance and cell boundaries overlapped. Taste pores, up to 3 pores in a single papilla, were found on the upper surface. Desquamation was more pronounced on the base of the fungiform papillae than on the upper surface. In almost all fungiform papillae some hairs protruded from the base. Parallel microplicae were found on the surface of the superficial cells of the base. The structure and function of the human tongue, as well as the microplicae of its superficial cells, are compared to those of various species of animals.  相似文献   

13.
Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

14.
The dorsal lingual surface of the common tree shrew was examined by SEM after treating it with HCl to remove the mucous substance. Filiform (FI), fungiform (FU) and circumvallate papillae (CI) were observed. The FI exhibited a small circular bulge surrounded by anterior and posterior filamentous processes. FU were scattered among the FI. There were 3 CI separating the anterior 4/5 from the posterior 1/5 of the tongue. In addition, a group of conical projections with caudal orientation was found anterior to the palatoglossal fold on each side of the tongue. Microridges were widely observed on the entire dorsal lingual surface, except on the free surface of FI processes.  相似文献   

15.
Summary Taste buds were found to stain strongly and selectively in intact papillae with highly acidic dyes such as ponceau S. In intact tongues the taste buds in the fungiform, circumvallate and foliate papillae of the cynomolgus monkey and in the fungiform papillae of the rat as well as the taste discs in the fungiform papillae of the frog could be visualized. This method enables a rapid location and counting of taste buds in taste papillae without preparing histological sections. In cynomolgus tongue material fixed in formalin, the dyes penetrate into the buds. In fresh tongues only the taste pore region of the buds stains, which suggests that in vivo taste buds are impenetrable underneath the pore.  相似文献   

16.
The objective of this study was to examine three dimensionally the embryonic and fetal stages of tongue development with scanning electron microscopy. Time-bred CD-1 mice were sacrificed at quarter-day intervals on days 10-13, and at half-day intervals on days 13.5-16.5 of gestation. Fetal tongues were dissected and fixed in s-collidine buffered 4% glutaraldehyde at pH7.4, and subsequently processed for SEM viewing. Tongue development was initiated on the 11th day by the appearance of the tuberculum impar and the two lateral lingual swellings on arch I. This was followed by the elevation of the hypobranchial eminence, which unites arches III and IV in the ventral midline, and overgrows arch II anteriorly. During the 12th day, remodeling occurred in areas of arches II and III, forming the root of the tongue. A cone-shaped midline swelling, the epiglottis, appeared in the ventral midline of arches III and IV. By the 13th day, the general proportions of the tongue, occupied by the body, root, and epiglottis, were established. The single circumvallate papilla and fungiform papillae were initiated during the early part of the 13th day, followed on the 15th day by differentiation of filiform and foliate papillae and raised nodules of lingual tonsilar tissue. The SEM study documented the temporal and morphological sequence of events during mouse tongue development. The tuberculum impar persisted to the late fetal stages and may therefore contribute largely to the dorsum of the tongue anterior to the circumvallate papilla.  相似文献   

17.
Taste bud quantitation may provide useful parameters for interspecies comparisons of the gustatory system. The present study is a morphometric analysis of bovine taste papillae. Circumvallate and fungiform papillae from six bovine tongues were serially sectioned and, following staining, analyzed. Circumvallate papillae were found to have a mean volume of 3.66 +/- 2.82 mm3, a mean number of taste buds per papilla of 445 +/- 279, and a mean taste bud density of 155 +/- 112 buds/mm3. Values for lateral fungiform papillae for the same three parameters were 0.384 +/- 0.184 mm3, 13.2 +/- 13.4, and 40.8 +/- 46.6 buds/mm3, respectively. Values for dorsal fungiform papillae were 0.438 +/- 0.246 mm3, 4.39 +/- 4.78, and 14.0 +/- 17.1 buds/mm3, respectively. Circumvallate papillae were found to have a significantly greater volume, number of taste buds per papilla, and taste bud density than either type of fungiform papilla. These data should serve as background for biochemical, endocrinological, or neurological studies involving the bovine tongue.  相似文献   

18.
Two experiments were conducted to investigate the psychophysicalresponse characteristics of single circumvallate papillae. InExperiment 1, 12 circumvallate papillae in four subjects werechemically stimulated to assess identification of taste qualities.Single circumvallate papillae were found to mediate multipletaste qualities, and the taste profiles obtained from differentpapillae were similar within the same subject. Moreover, sucrose,quinine monohydrochloride and citric acid elicited unitary andcharacteristic quality responding in these papillae from allsubjects, whereas NaCl elicited predominantly sour and/or bitterresponses from three of the four subjects. Experiment 2 directly compared responses obtained from singlecircumvallate papillae with those obtained from fungiform regionsof the tongue. Data for 10 subjects showed significantly greatersour responses to citric acid and NaCl in circumvallate papillaeand significantly greater salty responses to these compoundson the anterior tongue. In addition, the taste profiles forcitric acid and NaCl were distinct for circumvallate papillae,while those from the anterior tongue were similar. These datasuggest that the bitterness and sweetness of quinine and sugar,respectively, can be identified on the basis of sensory informationarising from either circumvallate or fungiform regions, butthat differentiation of the tastes of salts and acids may dependon a comparison of the input from both regions and/or additionalinformation arising from foliate regions.  相似文献   

19.
20.
The morphology of lingual papillae of the ten male mature Saanen goats (11 months old, approximately 42 kg in weight and of a known pedigree) was examined by scanning electron microscopy. Tissues were taken from the dorsal and ventral surfaces of the apex, body and root of the tongue, and were prepared accordingly and observed under the scanning electron microscope. On the dorsal and ventro-lateral surfaces of the lingual mucosa, three types of mechanical papillae (filiform, lenticular, and conical) and two types of gustatory papillae (vallate and fungiform) were observed. The structure and density of the filiform papillae differentiated on the anterior, posterior and ventro-lateral aspects of the tongue. Two types of lenticular papillae, both possessing a prominent surrounding papillary groove, were determined. The pyramidal-shaped type I lenticular papilla had a pointed apex while the round-shaped type II lenticular papilla possessed a blunt apex. Certain number of the type I lenticular papillae had double apices. The larger conical papillae were hollow structures, differing structurally from the filiform papillae with their larger size, a tip without projections and lack of the secondary papillae. The vallate papillae were present on both rims of the torus linguae, were encircled by a prominent gustatory furrow which was also surrounded by a thick annular fold. The fungiform papillae were scattered among the filiform papillae in the anterior two-thirds of the dorsal and lateral surfaces, and each of them was highly protected by surrounding filiform papillae, yet encircled by a papillary groove. Our findings indicate that Saanen goat have profuse distribution of papillae on the tongue displaying morphological features characteristic of mechanical function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号